DT9800 Series
User’s Manual
Trademark and Copyright Information

Measurement Computing Corporation, InstaCal, Universal Library, and the Measurement Computing logo are either trademarks or registered trademarks of Measurement Computing Corporation. Refer to the Copyrights & Trademarks section on mccdaq.com/legal for more information about Measurement Computing trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies.

© 2016 Measurement Computing Corporation. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any means, electronic, mechanical, by photocopying, recording, or otherwise without the prior written permission of Measurement Computing Corporation.

Notice

Measurement Computing Corporation does not authorize any Measurement Computing Corporation product for use in life support systems and/or devices without prior written consent from Measurement Computing Corporation. Life support devices/systems are devices or systems that, a) are intended for surgical implantation into the body, or b) support or sustain life and whose failure to perform can be reasonably expected to result in injury. Measurement Computing Corporation products are not designed with the components required, and are not subject to the testing required to ensure a level of reliability suitable for the treatment and diagnosis of people.
Radio and Television Interference

This equipment has been tested and found to comply with CISPR EN55022 Class A and EN61000-6-1 requirements and also with the limits for a Class A digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference, in which case the user will be required to correct the interference at his own expense.

Changes or modifications to this equipment not expressly approved by Data Translation could void your authority to operate the equipment under Part 15 of the FCC Rules.

Note: This product was verified to meet FCC requirements under test conditions that included use of shielded cables and connectors between system components. It is important that you use shielded cables and connectors to reduce the possibility of causing interference to radio, television, and other electronic devices.

Canadian Department of Communications Statement

This digital apparatus does not exceed the Class A limits for radio noise emissions from digital apparatus set out in the Radio Interference Regulations of the Canadian Department of Communications.

Le présent appareil numérique n’émet pas de bruits radioélectriques dépassant les limites applicables aux appareils numériques de la class A prescrites dans le Règlement sur le brouillage radioélectrique édicté par le Ministère des Communications du Canada.
Table of Contents

About this Manual ... 11
Intended Audience ... 11
How this Manual is Organized .. 11
Conventions Used in this Manual .. 12
Related Information ... 12
Where To Get Help ... 13

Chapter 1: Overview .. 15
Features ... 16
Supported Software ... 18
Accessories ... 21
Getting Started Procedure .. 22

Part 1: Getting Started .. 23

Chapter 2: Installing a Module .. 25
Unpacking .. 27
System Requirements ... 28
Attaching Modules to the Computer .. 29
 Connecting Directly to the USB Ports 29
 Connecting to an Expansion Hub ... 30
Attaching Backplanes/panels to the EC or EC-I Series 32
 Attaching a 5B Series Backplane 33
 Attaching a 7B Series Backplane 33
 Attaching an AC1324 Screw Terminal Panel 34
 Attaching a PB16H Opto-22 Backplane 34
 Attaching an STP-EZ Screw Terminal Panel 35

Chapter 3: Configuring the Module and/or Device Driver 37
Configuring the Device Driver ... 39
Configuring the EC and EC-I Series Modules 40

Chapter 4: Wiring Signals .. 43
Wiring Signals to a DT9800 Standard Series Module 45
 Connecting Analog Input Signals 46
 Connecting Single-Ended Voltage Inputs 47
 Connecting Pseudo-Differential Voltage Inputs 48
 Connecting Differential Voltage Inputs 49
 Connecting Current Loop Inputs 51
 Connecting Thermocouple Inputs 52
Connecting Analog Output Signals ... 53
Connecting Digital I/O Signals ... 53
Connecting Counter/Timer Signals .. 54
 Connecting Event Counting Signals .. 54
 Connecting Frequency Measurement Signals 56
 Connecting Pulse Output Signals .. 57
Wiring Signals to the EC or EC-I Series .. 59
Connecting Analog Input Signals .. 62
 Using 5B or 7B Series Signal Conditioning Modules 62
 Using an AC1324 Screw Terminal Panel 62
 Connecting Single-Ended Voltage Inputs 64
 Connecting Pseudo-Differential Voltage Inputs 65
 Connecting Differential Voltage Inputs 65
 Connecting Current Loop Inputs ... 68
Connecting Analog Output Signals ... 69
Connecting Digital I/O Signals ... 70
Connecting Counter/Timer Signals .. 73
 Connecting Event Counting Signals .. 74
 Connecting Frequency Measurement Signals 76
 Connecting Pulse Output Signals .. 77

Chapter 5: Verifying the Operation of a Module 79
Running the Quick DataAcq Application 81
Testing Single-Value Analog Input ... 82
Testing Single-Value Analog Output .. 83
Testing Continuous Analog Input .. 84
Testing Single-Value Digital Input ... 85
Testing Single-Value Digital Output .. 86
Testing Frequency Measurement .. 87
Testing Pulse Output .. 88

Part 2: Using Your Module ... 89

Chapter 6: Principles of Operation ... 91
Analog Input Features .. 93
 Input Resolution ... 93
 Analog Input Channels .. 94
 Specifying a Single Channel ... 94
 Specifying One or More Channels 94
 Specifying Digital Input Lines in the Analog Input Channel List 95
 Performing Dynamic Digital Output Operations 95
Contents

Input Ranges and Gains ... 96
A/D Sample Clock Sources .. 98
 Internal A/D Sample Clock ... 99
 External A/D Sample Clock .. 99
Triggers .. 100
Analog Input Conversion Modes .. 100
 Continuously Paced Scan Mode .. 101
 Triggered Scan Mode .. 102
 Software-Retriggered Scan Mode .. 102
 Externally-Retriggered Scan Mode 104
Data Format .. 104
Data Transfer .. 107
Error Conditions .. 107
Analog Output Features .. 108
Output Resolution ... 108
Analog Output Channels .. 108
Output Ranges and Gains .. 109
Conversion Modes .. 109
Data Format .. 110
Digital I/O Features ... 111
Digital I/O Lines .. 111
Resolution ... 111
Operation Modes ... 112
Counter/Timer Features .. 113
Units .. 113
C/T Clock Sources .. 113
 Internal C/T Clock ... 114
 External C/T Clock ... 114
 Internally Cascaded Clock ... 114
Gate Types .. 115
Pulse Output Types and Duty Cycles .. 116
Counter/Timer Operation Modes .. 117
 Event Counting ... 117
 Frequency Measurement ... 118
 Rate Generation .. 119
 One-Shot ... 120
 Repetitive One-Shot ... 121
Chapter 7: Supported Device Driver Capabilities 123
Data Flow and Operation Options .. 125
Buffering .. 126
Triggered Scan Mode .. 126
Data Encoding .. 126
Channels ... 127
Gain ... 127
Ranges .. 128
Resolution .. 128
Current and Resistance Support .. 129
Thermocouple, RTD, and Thermistor Support 130
IEPE Support ... 131
Bridge and Strain Gage Support .. 131
Start Triggers ... 132
Reference Triggers .. 132
Clocks .. 133
Counter/Timers ... 134
Tachometers .. 135

Chapter 8: Calibration ... 137
Running the Calibration Utility ... 139
Calibrating the Analog Input Subsystem .. 140
 Configuring for Calibration ... 140
 Using the Auto-Calibration Procedure ... 140
 Using the Manual Calibration Procedure 141
Calibrating the Thermocouple Circuitry ... 142
Calibrating the Analog Output Subsystem .. 144

Chapter 9: Troubleshooting ... 145
General Checklist .. 146
Technical Support .. 148
If Your Module Needs Factory Service .. 149

Appendix A: Specifications ... 151
Analog Input Specifications .. 152
Analog Output Specifications .. 155
Digital I/O Specifications ... 156
Counter/Timer Specifications .. 157
Power, Physical, and Environmental Specifications 158
Cable and Terminal Block Specifications 159
Regulatory Specifications .. 160
Appendix B: Connector Pin Assignments .. 161
DT9800 Standard Series ... 162
EC and EC-I Series Modules .. 164
DT9804 BNC Modules ... 167
 Mechanical Specifications ... 168
 D-Sub Connector Pin Assignments ... 169

Index .. 173
About this Manual

The first part of this manual describes how to install and set up your DT9800 Series module and device driver, and verify that your module is working properly.

The second part of this manual describes the features of the DT9800 Series modules, the capabilities of the DT9800 Series Device Driver, and how to program the DT9800 Series modules using the DT-Open Layers for .NET Class Library™ software. Troubleshooting and calibration information is also provided.

Note: For more information on the class library, refer to the DT-Open Layers for .NET Class Library User’s Manual. If you are using the DataAcq SDK or a software application to program your device, refer to the documentation for that software for more information.

Intended Audience

This document is intended for engineers, scientists, technicians, or others responsible for using and/or programming the DT9800 Series modules for data acquisition operations in the Microsoft® Windows Vista®, Windows 7, or Windows 8 operating system. It is assumed that you have some familiarity with data acquisition principles and that you understand your application.

How this Manual is Organized

The manual is organized as follows:

- Chapter 1, “Overview,” describes the major features of the modules, as well as the supported software and accessories for the modules.
- Chapter 2, “Installing a Module,” describes how to install the DT9800 Series module.
- Chapter 3, “Configuring the Module and/or Device Driver,” describes how to configure the device driver and the module.
- Chapter 4, “Wiring Signals,” describes how to wire signals to a DT9800 Series module.
- Chapter 5, “Verifying the Operation of a Module,” describes how to verify the operation of the module with the Quick DataAcq application.
- Chapter 6, “Principles of Operation,” describes all of the features of the modules and how to use them in your application.
- Chapter 7, “Supported Device Driver Capabilities,” lists the data acquisition subsystems and the associated features accessible using the DT9800 Series Device Driver.
- Chapter 8, “Calibration,” describes how to calibrate the analog I/O circuitry of the modules.
- Chapter 9, “Troubleshooting,” provides information that you can use to resolve problems with the modules and the device driver, should they occur.
• Appendix A, “Specifications,” lists the specifications of the modules.
• Appendix B, “Connector Pin Assignments,” shows the pin assignments for the connectors and the screw terminal assignments for the modules.
• An index completes this manual.

Conventions Used in this Manual

The following conventions are used in this manual:

• Notes provide useful information or information that requires special emphasis, cautions provide information to help you avoid losing data or damaging your equipment, and warnings provide information to help you avoid catastrophic damage to yourself or your equipment.
• Items that you select or type are shown in bold.

Related Information

Refer to the following documents for more information on using the DT9800 Series modules:

• Benefits of the Universal Serial Bus for Data Acquisition. This white paper describes why USB is an attractive alternative for data acquisition. It is available on the Data Translation web site (www.mccdaq.com).
• QuickDAQ User’s Manual (UM-24774). This manual describes how to create a QuickDAQ application to acquire and analyze data from DT-Open Layers data acquisition devices.
• DT-Open Layers for .NET User’s Manual (UM-22161). For programmers who are developing their own application programs using Visual C# or Visual Basic .NET, this manual describes how to use the DT-Open Layers for .NET Class Library to access the capabilities of Data Translation data acquisition devices.
• DataAcq SDK User’s Manual (UM-18326). For programmers who are developing their own application programs using the Microsoft C compiler, this manual describes how to use the DT-Open Layers DataAcq SDK™ to access the capabilities of Data Translation data acquisition devices.
• DAQ Adaptor for MATLAB (UM-22024). This document describes how to use Data Translation’s DAQ Adaptor to provide an interface between the MATLAB Data Acquisition subsystem from The MathWorks and Data Translation’s DT-Open Layers architecture.
• LV-Link Online Help. This help file describes how to use LV-Link™ with the LabVIEW™ graphical programming language to access the capabilities of Data Translation data acquisition devices.
• Microsoft Windows Vista, Windows 7, or Windows 8 documentation.
• USB web site (http://www.usb.org).
• Omega Complete Temperature Measurement Handbook and Encyclopedia®. This document, published by Omega Engineering, provides information on how to linearize voltage values into temperature readings for various thermocouple types.
Where To Get Help

Should you run into problems installing or using a DT9800 Series module, the Data Translation Technical Support Department is available to provide technical assistance. Refer to Chapter 9 starting on page 145 for more information. If you are outside the United States or Canada, call your local distributor, whose number is listed on our web site (www.mccdaq.com).
Overview

Features ... 16
Supported Software .. 18
Accessories ... 21
Getting Started Procedure .. 22
Chapter 1

Features

The DT9800 Series is a family of low-cost, multifunction data acquisition modules for the Universal Serial Bus (USB) (Ver. 1.1 or Ver. 2.0).

Most computers have two or more USB ports that allow direct connection to USB devices. You can expand the number of USB devices attached to a single USB port by using expansion hubs. DT9800 Series modules are part of the high-power, bus-powered USB class; therefore, the modules do not require external power, but the expansion hubs do require external power.

DT9800 Series modules reside outside of the PC and install with a single cable to ease installation. Modules can be “hot swapped” or plugged and unplugged while the PC is on, making them useful for many data acquisition applications.

The DT9800 Series includes the following subseries: DT9800 Standard Series, DT9800-EC Series, and DT9800-EC-I Series.

The DT9800-EC Series modules are not isolated; the DT9800 Standard Series and DT9800-EC-I Series modules are isolated. In addition, the DT9800-EC and DT9800-EC-I Series modules support the use of optional backplanes and screw terminal panels that provide signal conditioning and other features. Table 1 lists the modules in each series and the key features of each.

Table 1: Key Features Among the DT9800 Series

<table>
<thead>
<tr>
<th>Series</th>
<th>Function Modules</th>
<th># of Analog Inputs</th>
<th>Analog Input Sample Rate</th>
<th># of Analog Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard Series</td>
<td>DT9801(^a)</td>
<td>16 SE/8 DI</td>
<td>100 kS/s</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DT9802(^a)</td>
<td>16 SE/8 DI</td>
<td>100 kS/s</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DT9803(^b)</td>
<td>16 SE/8 DI</td>
<td>100 kS/s</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DT9804(^b)</td>
<td>16 SE/8 DI</td>
<td>100 kS/s</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>DT9805(^c)</td>
<td>16 SE/8 DI/ 7 thermocouples and 1 CJC</td>
<td>50 kS/s</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DT9806(^c)</td>
<td>16 SE/8 DI/ 7 thermocouples and 1 CJC</td>
<td>50 kS/s</td>
<td>2</td>
</tr>
<tr>
<td>DT9800-EC Series(^d)</td>
<td>DT9801-EC(^a)</td>
<td>16 SE/8 DI(^e)</td>
<td>100 kS/s</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DT9802-EC(^a)</td>
<td>16 SE/8 DI(^e)</td>
<td>100 kS/s</td>
<td>2(^f)</td>
</tr>
<tr>
<td></td>
<td>DT9803-EC(^b)</td>
<td>16 SE/8 DI(^g)</td>
<td>100 kS/s</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DT9804-EC(^b)</td>
<td>16 SE/8 DI(^g)</td>
<td>100 kS/s</td>
<td>2(^h)</td>
</tr>
</tbody>
</table>
Overview

All DT9800 Series modules share the following major features:

- One 8-bit digital input port and one 8-bit digital output port; the digital input lines can be included as part of the analog input channel-gain list to correlate the timing of analog and digital events; digital outputs can drive external solid-state relays.
- Two 16-bit user counter/timers programmable for event counting, frequency measurement, rate generation (continuous pulse output), one-shot, and repetitive-one shot pulse output operations.
- USB compatibility and galvanic isolation.
- Software configurable termination resistance for differential inputs on a channel-by-channel basis.
- Input gains of 1, 2, 4, and 8 for all modules except the DT9805 and DT9806, which support gains of 1, 10, 100, and 500.
- Continuously paced and triggered scan capability.
- A 32-location channel-gain list that supports sampling analog input channels at the same or different gains in sequential or random order.
- Internal and external clock sources for the analog input subsystem.
- Digital TTL triggering for the analog input subsystem.
- One dynamic digital output line.
- Programmable gate types and pulse output types.

In addition, the DT9805 and DT9806 modules provide thermocouples and low-level analog input capability. A software calibration utility is provided for calibrating the analog I/O subsystems of all modules.

Table 1: Key Features Among the DT9800 Series (cont.)

<table>
<thead>
<tr>
<th>Series</th>
<th>Function Modules</th>
<th># of Analog Inputs</th>
<th>Analog Input Sample Rate</th>
<th># of Analog Outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800-EC-I Series<sup>a</sup></td>
<td>DT9801-EC-I<sup>a</sup></td>
<td>16 SE/8 DI<sup>a</sup></td>
<td>100 kS/s</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DT9802-EC-I<sup>a</sup></td>
<td>16 SE/8 DI<sup>a</sup></td>
<td>100 kS/s</td>
<td>2<sup>f</sup></td>
</tr>
<tr>
<td></td>
<td>DT9803-EC-I<sup>b</sup></td>
<td>16 SE/8 DI<sup>b</sup></td>
<td>100 kS/s</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>DT9804-EC-I</td>
<td>16 SE/8 DI<sup>b</sup></td>
<td>100 kS/s</td>
<td>2<sup>h</sup></td>
</tr>
</tbody>
</table>

- The resolution is 12 bits.
- The resolution is 16 bits.
- The gains provided on the DT9805 and DT9806 are 1, 10, 100, and 500. All other modules provide gains of 1, 2, 4, and 8.
- The DT9800-EC Series boards are nonisolated; the DT9800-EC-I Series boards and all other DT9800 Series boards are isolated.
- The analog input range is 0 to 10 V or ±10 V.
- The analog output range is 0 to 10 V, 0 to 5 V, ±10 V, or ±5 V.
- The analog input range is ±10 V.
- The analog output range is ±10 V.

All DT9800 Series modules share the following major features:

- One 8-bit digital input port and one 8-bit digital output port; the digital input lines can be included as part of the analog input channel-gain list to correlate the timing of analog and digital events; digital outputs can drive external solid-state relays.
- Two 16-bit user counter/timers programmable for event counting, frequency measurement, rate generation (continuous pulse output), one-shot, and repetitive-one shot pulse output operations.
- USB compatibility and galvanic isolation.
- Software configurable termination resistance for differential inputs on a channel-by-channel basis.
- Input gains of 1, 2, 4, and 8 for all modules except the DT9805 and DT9806, which support gains of 1, 10, 100, and 500.
- Continuously paced and triggered scan capability.
- A 32-location channel-gain list that supports sampling analog input channels at the same or different gains in sequential or random order.
- Internal and external clock sources for the analog input subsystem.
- Digital TTL triggering for the analog input subsystem.
- One dynamic digital output line.
- Programmable gate types and pulse output types.

In addition, the DT9805 and DT9806 modules provide thermocouples and low-level analog input capability. A software calibration utility is provided for calibrating the analog I/O subsystems of all modules.
Supported Software

The following software is available for use with the DT9800 Series modules and is shipped on the Data Acquisition OMNI CD:

- **DT9800 Series Device Driver** – The device driver allows you to use a DT9800 Series module with any of the supported software packages or utilities. Refer to Chapter 2 starting on page 25 for more information on loading and configuring the device driver.

- **Quick DataAcq application** – The Quick DataAcq application provides a quick way to get up and running using a DT9800 Series module. Using this application, you can verify key features of the modules, display data on the screen, and save data to disk. Refer to Chapter 5 starting on page 79 for more information on using the Quick DataAcq application.

- **QuickDAQ Base Version** – The base version of QuickDAQ is free-of-charge and allows you to acquire and analyze data from all Data Translation USB and Ethernet devices, except the DT9841 Series, DT9817, DT9835, and DT9853/54. Using the base version of QuickDAQ, you can perform the following functions:
 - Discover and select your devices.
 - Configure all input channel settings for the attached sensors.
 - Load/save multiple hardware configurations.
 - Generate output stimuli (fixed waveforms, swept sine waves, or noise signals).
 - On each supported data acquisition device, acquire data from all channels supported in the input channel list.
 - Choose to acquire data continuously or for a specified duration.
 - Choose software or triggered acquisition.
 - Log acquired data to disk in an .hpf file.
 - Display acquired data during acquisition in either a digital display using the Channel Display window or as a waveform in the Channel Plot window.
 - Choose linear or logarithmic scaling for the horizontal and vertical axes.
 - View statistics about the acquired data, including the minimum, maximum, delta, and mean values and the standard deviation in the Statistics window.
 - Export time data to a .csv or .txt file; you can open the recorded data in Microsoft Excel® for further analysis.
 - Read a previously recorded .hpf data file.
 - Customize many aspects of the acquisition, display, and recording functions to suit your needs, including the acquisition duration, sampling frequency, trigger settings, filter type, and temperature units to use.
• **QuickDAQ FFT Analysis Option** – When enabled with a purchased license key, the QuickDAQ FFT Analysis option includes all the features of the QuickDAQ Base version plus these features:

 − The ability to switch between the Data Logger time-based interface and the FFT Analyzer block/average-based interface.

 − Supports software, freerun, or triggered acquisition with accept and reject controls for impact testing applications.

 − Allows you to perform single-channel FFT (Fast Fourier Transform) operations, including AutoSpectrum, Spectrum, and Power Spectral Density, on the acquired analog input data. You can configure a number of parameters for the FFT, including the FFT size, windowing type, averaging type, integration type, and so on.

 − Allows you to display frequency-domain data as amplitude or phase.

 − Supports dB or linear scaling with RMS (root mean squared), peak, and peak-to-peak scaling options

 − Supports linear or exponential averaging with RMS, vector, and peak hold averaging options.

 − Supports windowed time channels.

 − Supports the following response window types: Hanning, Hamming, Bartlett, Blackman, Blackman Harris, and Flat top.

 − Supports the ability to lock the waveform output to the analysis frame time.

 − Allows you to configure and view dynamic performance statistics, including the input below full-scale (IBF), total harmonic distortion (THD), spurious free dynamic range (SFDR), signal-to-noise and distortion ratio (SINAD), signal-to-noise ratio (SNR), and the effective number of bits (ENOB), for selected time-domain channels in the Statistics window.

 − Supports digital IIR (infinite impulse response) filters.

• **QuickDAQ Advanced FFT Analysis Option** – When enabled with a purchased software license, the QuickDAQ Advanced FFT Analysis option includes all the features of the QuickDAQ Base version with the FFT Analysis option plus these features:

 − Allows you to designate a channel as a Reference or Response channel.

 − Allows you to perform two-channel FFT analysis functions, including Frequency Response Functions (Inertance, Mobility, Compliance, Apparent Mass, Impedance, Dynamic Stiffness, or custom FRF) with H1, H2, or H3 estimator types, Cross-Spectrum, Cross Power Spectral Density, Coherence, and Coherent Output Power.

 − Supports the Exponential response window type.

 − Supports the following reference window types: Hanning, Hamming, Bartlett, Blackman, Blackman Harris, FlatTop, Exponential, Force, and Cosine Taper windows.

 − Supports real, imaginary, and Nyquist display functions.

 − Allows you to save data in the .uff file format.
• **Calibration Utility** – The Calibration Utility allows you to calibrate the analog I/O circuitry of the modules. Refer to Chapter 8 starting on page 137 for more information on this utility.

• **DT-Open Layers for .NET Class Library** – Use this class library if you want to use Visual C# or Visual Basic for .NET to develop your own application software for a DT9800 Series module using Visual Studio 2003-2012; the class library complies with the DT-Open Layers standard.

• **DataAcq SDK** – Use the Data Acq SDK if you want to use Visual Studio 6.0 and Microsoft C or C++ to develop your own application software for a DT9800 Series module using Windows Vista, Windows 7, or Windows 8; the DataAcq SDK complies with the DT-Open Layers standard.

• **DAQ Adaptor for MATLAB** – Data Translation’s DAQ Adaptor provides an interface between the MATLAB Data Acquisition (DAQ) subsystem from The MathWorks and Data Translation’s DT-Open Layers architecture.

• **LV-Link** – An evaluation version of this software is included or provided via a link on the Data Acquisition OMNI CD. Use LV-Link if you want to use the LabVIEW graphical programming language to access the capabilities of the DT9800 Series modules.

Refer to the Data Translation web site (www.mccdaq.com) for information about selecting the right software package for your needs.
Accessories

One EP365 cable is shipped with each DT9800 Series module. The EP365 is a 1.83-meter, USB cable that connects the USB connector of the DT9800 Series module to the USB connector on the host computer. If you want to buy additional USB cables, EP365 is available as an accessory product for the DT9800 Series.

In addition, you can purchase the following optional items from Data Translation for use with the DT9800 Series:

- **5B01** – A 16-channel backplane that accepts 5B Series signal conditioning modules.
- **5B08** – An 8-channel backplane that accepts 5B Series signal conditioning modules.
- **PWR-977 power supply** – A 5 V, 3 A power supply for powering the 5B Series backplanes.
- **7BP16-1** – A 16-channel backplane that accepts 7B Series signal conditioning modules.
- **7BP08-1** – An 8-channel backplane that accepts 7B Series signal conditioning modules.
- **7BP04-1** – A 4-channel backplane that accepts 7B Series signal conditioning modules.
- **AC1324** – A screw terminal panel that connects to a DT9800-EC or DT9800-EC-I Series module to allow access to the analog I/O, dynamic digital output, counter/timer, and power signals.
- **PB16H** – A digital backplane that connects to the DT9800-EC or DT9800-EC-I module to allow access to the digital I/O signals.
- **STP-EZ** – A screw terminal panel that connects to a DT9800-EC or DT9800-EC-I Series module to allow access to the digital I/O signals. A 50-pin ribbon cable is provided with the STP-EZ to allow direct connection to a DT9800-EC or DT9800-EC-I Series module.
- **AC1315** – A 2-foot, 26-pin female to 26-pin female cable that connects a 5B Series backplane to a DT9800-EC or DT9800-EC-I Series module.
- **AC1393** – A 6-inch, 26-pin male to 25-pin female adapter cable that connects a 7B Series backplane to the AC1315 cable; the AC1315 cable then connects to a DT9800-EC or DT9800-EC-I Series module.
- **HES14-21 power supply** – A linear ac/dc power supply that provides +24 Vdc for powering 7B Series backplanes.
- **EP035** – A 2.4-meter, 50-pin ribbon cable that connects the PB16H Opto 22 backplane to a DT9800-EC or DT9800-EC-I Series module.
Getting Started Procedure

The flow diagram shown in Figure 1 illustrates the steps needed to get started using the DT9800 Series modules. This diagram is repeated in each Getting Started chapter; the shaded area in the diagram shows you where you are in the procedure.

![Getting Started Flow Diagram](image)

- Install the Module (see Chapter 2 starting on page 25)
- Configure the Module and/or Device Driver (see Chapter 3 starting on page 37)
- Wire Signals (see Chapter 4 starting on page 43)
- Verify the Operation of the Module (see Chapter 5 starting on page 79)
Part 1: Getting Started
Installing a Module

Unpacking ... 27
System Requirements .. 28
Attaching Modules to the Computer 29
Attaching Backplanes/Panels to the EC or EC-I Series 32
Note: All DT9800 Series modules are factory-calibrated and require no further adjustment prior to installation. If you are using the DT9800 Standard, DT9800-EC, or DT9800-EC-I Series modules and decide later to recalibrate them, refer to Chapter 8 starting on page 137 for instructions.
Unpacking

Open the shipping box and verify that the following items are present:

- DT9800 Series module
- EP365 USB cable
- Data Acquisition OMNI CD

If an item is missing or damaged, contact Data Translation. If you are in the United States, call the Customer Service Department at (508) 946-5100. An application engineer will guide you through the appropriate steps for replacing missing or damaged items. If you are located outside the United States, call your local distributor, listed on Data Translation’s web site (www.mccdaq.com).
System Requirements

For reliable operation, ensure that your computer meets the following system requirements:

- Processor: Pentium 4/M or equivalent
- RAM: 1 GB
- Screen Resolution: 1024 x 768 pixels
- Operating System: Windows 8, Windows 7, or Windows Vista (32- and 64-bit)
- Disk Space: 4 GB
Attaching Modules to the Computer

You can attach a DT9800 Series module to the host computer in one of two ways:

- Connect directly to a USB port of the host computer, described on this page. Use this method if one or two DT9800 Series modules are sufficient for your application.

- Connect to one or more self-powered USB hubs, described on page 30. Use this method if your application requires more DT9800 Series modules than the USB ports on the host computer.

You must install the device driver before connecting your DT9800 Series module(s) to the host computer.

Note: DT9800 Series modules are low-power devices (using less than 500 mA); therefore, they do not require external power supplies.

Connecting Directly to the USB Ports

To connect a DT9800 Series module directly to a USB port on your computer, do the following:

1. Attach one end of the EP365 (USB) cable, which is shipped with the DT9800 Series module, to the USB port on the module.

2. Attach the other end of the EP365 cable to one of the USB ports on the host computer, as shown in Figure 2.

 The operating system automatically detects the USB device and starts the Found New Hardware wizard.

![Figure 2: Attaching the Module to the Host Computer](image)

3. **For Windows Vista:**

 a. Click *Locate and install driver software (recommended).*

 The popup message “Windows needs your permission to continue” appears.

 b. Click *Continue.*

 The Windows Security dialog box appears.

 c. Click *Install this driver software anyway.*
4. Repeat these steps to attach another DT9800 Series module to the host computer, if desired.

Note: You can unplug a module, and then plug it in again, if you wish, without causing damage. This process is called hot-swapping.

Your application may take a few seconds to recognize a module once it is plugged back in.

Connecting to an Expansion Hub

Expansion hubs are powered by their own external power supply. The practical number of DT9800 Series modules that you can connect to a single USB port depends on the throughput you want to achieve.

Note: The bandwidth of the USB Ver. 1.1 bus is 12 Mbits/second. Each DT9800 Series module running at full speed (100 kHz) requires 200 kB of this bandwidth. Therefore, if you want to achieve full throughput on each module, you should connect no more than four DT9800 Series modules to a single USB Ver. 1.1 port.

To connect multiple DT9800 Series modules to an expansion hub, do the following:

1. Attach one end of the USB cable to the DT9800 Series module and the other end of the USB cable to an expansion hub.
2. Connect the power supply for the expansion hub to an external power supply.
3. Connect the hub to the USB port on the host computer using another USB cable.

 The operating system automatically detects the USB device and starts the Found New Hardware wizard.
4. **For Windows Vista:**

 a. Click **Locate and install driver software (recommended).**

 The popup message "Windows needs your permission to continue" appears.

 b. Click **Continue.**

 The Windows Security dialog box appears.

 c. Click **Install this driver software anyway.**

Note: Windows 7 and Windows 8 find the device automatically.
5. Repeat these steps until you have attached the number of hubs and modules that you desire. Refer to Figure 3.

The operating system automatically detects the USB devices as they are installed.

![Diagram of attaching multiple modules using expansion hubs]

Figure 3: Attaching Multiple Modules Using Expansion Hubs

Note: You can unplug a module, and then plug it in again, if you wish, without causing damage. This process is called hot-swapping.

Your application may take a few seconds to recognize a module once it is plugged back in.

If you are using a DT9800-EC or DT9800-EC-I Series module, continue with the next section. Otherwise, continue with the instructions on wiring in Chapter 4 starting on page 43.
Attaching Backplanes/ Panels to the EC or EC-I Series

Only the DT9800-EC and DT9800-EC-I Series modules support Analog Devices 5B and 7B Series backplanes, the Opto-22 PB16H digital I/O backplane, and the Data Translation STP-EZ backplane and AC1324 screw terminal panel.

The DT9800-EC and DT9800-EC-I Series modules provide the following three connectors:

- **Connector J6** – Supports 5B and 7B Series backplanes or an AC1324 screw terminal panel for analog input connections.

 Specific 5B and 7B Series backplanes that are supported include the following:

 - 5B01 – a 16-channel backplane for 5B Series signal conditioning modules
 - 5B08 – an 8-channel backplane for 5B Series signal conditioning modules
 - 7BP16-1 – a 16-channel backplane for 7B Series signal conditioning modules
 - 7BP08-1 – an 8-channel backplane for 7B Series signal conditioning modules
 - 7BP04-1 – a 4-channel backplane for 7B Series signal conditioning modules

- **Connector J5** – Supports an AC1324 screw terminal panel for analog output, dynamic digital output, counter/timer, and power connections.

- **Connector J4** – Supports the STP-EZ and the PB16H digital I/O backplane. The PB16H supports eight digital inputs at locations 0 to 7, and eight digital outputs at locations 8 to 15.

Figure 4 shows the location of these connectors on the DT9800-EC and DT9800-EC-I Series modules.

![Figure 4: J6, J5, and J4 Connectors](image)

This section describes how to connect a 5B or 7B Series backplane, a AC1324 screw terminal panel, and/or a PB16H Opto-22 backplane to your DT9800-EC or DT9800-EC-I Series module.
Attaching a 5B Series Backplane

To connect a 5B Series signal conditioning backplane to a DT9800-EC or DT9800-EC-I Series module, complete the steps that follow while referring to Figure 5:

1. Plug one end of an AC1315 cable into the J6 connector of the DT9800-EC or DT9800-EC-I Series module.
2. Plug the other end of the AC1315 cable into the 26-pin connector on the 5B Series backplane.
3. Connect power supply PWR-977 to the +5 V and power ground screw terminals on the 5B Series backplane and to the wall outlet.

Attaching a 7B Series Backplane

To connect a 7B Series signal conditioning backplane to a DT9800-EC or DT9800-EC-I Series module, complete the steps that follow while referring to Figure 6:

1. Plug one end of an AC1315 cable into the J6 connector of the DT9800-EC or DT9800-EC-I Series module.
2. Plug the other end of the AC1315 cable into the 26-pin connector of the AC1393 adapter cable; then, attach the 25-pin connector of the AC1393 adapter cable to the 7B Series backplane.

3. Connect power supply HES14-21 to the V+A and COM screw terminals on the 7B Series backplane and to the wall outlet.

Attaching an AC1324 Screw Terminal Panel

To connect an AC1324 screw terminal panel to a DT9800-EC or DT9800-EC-I Series module, do the following:

1. Plug one end of an AC1315 cable into the J6 or J5 connector of the DT9800-EC or DT9800-EC-I Series module.

2. Plug the other end of the AC1315 cable into the 26-pin connector on the AC1324 screw terminal panel, as shown in Figure 7.

Attaching a PB16H Opto-22 Backplane

To connect a PB16H Opto-22 backplane to a DT9800-EC or DT9800-EC-I Series module, do the following:

1. Plug one end of an EP035 cable into the J4 connector of the DT9800-EC or DT9800-EC-I Series module.

2. Plug the other end of the EP035 cable into the 50-pin connector on the PB16H Opto-22 backplane, as shown in Figure 8.
Attaching an STP-EZ Screw Terminal Panel

To connect an STP-EZ screw terminal panel to a DT9800-EC or DT9800-EC-I Series module, do the following:

1. Attach one end of the 50-pin cable that is shipped with the STP-EZ screw terminal panel into connector J4 on the DT9800-EC or DT9800-EC-I board.

2. Attach the other end of the cable to the J1 connector on the STP-EZ screw terminal panel, as shown in Figure 9.

Figure 9: Connecting the STP-EZ to the DT9800-EC or DT9800-EC-I Module
Configuring the Module and/or Device Driver

Configuring the Device Driver ... 39
Configuring the EC and EC-I Series Modules 40
If you are using a DT9800 Standard Series, DT9800-EC Series, or DT9800-EC-I Series module, you must configure the device driver; refer to page 39 for information.

In addition, if you are using a DT9800-EC or DT9800EC-I Series module, you must configure the module; refer to page 40 for information.
Configuring the Device Driver

This section describes how to configure the device driver for a DT9800 Standard Series, DT9800-EC Series, or DT9800-EC-I Series module to use or not use bias-return termination resistance.

To configure the device driver, do the following:

1. If you have not already done so, power up the host computer and all peripherals.

2. From the Windows Control Panel, double-click the Open Layers Control Panel icon. The Data Acquisition Control Panel dialog box appears.

3. Click the DT9800 Series module that you want to configure, and then click Advanced. The DT9800 Configuration dialog box appears.

4. If you are using differential analog input channels, we recommend that you select the 10k Ohm Resistor Terminations checkbox for each analog input channel on the module. This ensures that 10 kΩ of bias return termination resistance is used for the analog input channels. (This is the default configuration.) Bias return termination resistance is particularly useful when your differential source is floating.

If you are using single-ended analog input channels, clear the checkbox for each analog input channel so that bias return resistance is not used.

5. To continuously power the analog and/or digital outputs, select the Power Always On checkbox. The DT9800 Series module will remain on even when you exit from the applications that use the module.

If you want to shut down power to the module, you must uncheck this checkbox and close the control panel. Once all applications that use this module are exited, the module will power down. The module will remain off until you either run an application that uses the module or click the Advanced button from the Open Layers Data Acquisition Control Panel.

6. Click OK.

7. If you want to rename the module, click Edit Name; otherwise, go to step 9.

8. Enter a new name for the module, and then click OK.

Note: This name is used to identify the module in all subsequent applications.

9. When you are finished configuring the module, click Close.

10. Repeat steps 3 to 9 for the other modules that you want to configure.

11. Close the Control Panel.

If you are using a DT9800-EC or DT9800-EC-I module, continue with the next section. Otherwise, continue with the instructions on wiring in Chapter 4 starting on page 43.
Configuring the EC and EC-I Series Modules

To use 5B or 7B Series signal conditioning backplanes with a DT9800-EC or DT9800-EC-I Series module, you must configure your USB module for proper operation.

By default, the 5B01 and 7BP16-1 backplanes map to single-ended analog input channels 0 to 15, the 5B08 and 7BP08-1 backplanes map to single-ended analog input channels 0 to 7, and the 7BP04-1 backplane maps to single-ended analog input channels 0 to 3. However, you can use channels 14 and 15 on the 5B01 or 7BP16-1 backplane as analog output channels 0 and 1, if you wish.

Note: You cannot use analog output modules on the 5B08, 7BP04-1, or 7BP08-1 backplane.

You can determine how channels 14 and 15 are used on the 5B01 and 7BP16-1 backplanes using DIP switch block SW1 on the DT9800-EC and DT9800-EC-I modules. DIP switch SW1 contains switches 1 to 4.

To use channels 14 and 15 on the 5B01 or 7BP16 as analog inputs, slide all the switches of DIP switch SW1 on the DT9800-EC or DT9800-EC-I Series module to the OFF position. To use channel 14 on the 5B01 or 7BP16 as analog output channel 0, set switches 1 and 3 of DIP switch SW1 on the DT9800-EC or DT9800-EC-I Series module to the ON position.

To use channel 15 on the 5B01 or 7BP16 as analog output channel 1, set switches 2 and 4 of DIP switch SW1 on the DT9800-EC or DT9800-EC-I Series modules to the ON position.

Refer to Figure 10 for the location of DIP switch SW1.
For example, assume that you are using a 5B01 with the DT9801-EC and that you want to use analog output channels 0 and 1. In this case, ensure that you wire DAC0 signals to channel 14 and DAC1 signals to channel 15 on the 5B01 backplane. Then, set all the switches of DIP switch SW1 on the DT9800-EC or DT9800-EC-I Series module to the ON position.

Also note the following considerations when using 5B and 7B Series signal conditioning accessories:

- If you are using a 5B Series backplane, you must install jumper W3 on the 5B Series backplane to connect Amp Low to Analog Ground.
- 5B and 7B thermocouple modules provide their own CJC and return a voltage that already compensates for CJC. Therefore, when using 5B and 7B Series thermocouple modules, you do not have to compensate for offsets.
- The output of many 5B modules is ±5 V. The output of many 7B modules is 0 to 10 V. Ensure that you select an input range that matches the output of the 5B or 7B modules that you are using. For example, if you are using 5B modules that have an output of ±5 V, use a bipolar input range and a gain of 2 on the DT9800-EC and DT9800-EC-I Series modules.
- Connect all unused inputs to analog common. Reading an open channel can cause settling problems on the next valid channel.
Wiring Signals

Wiring Signals to a DT9800 Standard Series Module 45
Wiring Signals to the EC or EC-I Series ... 59
Note: For information about the special DT9804 BNC modules, refer to “DT9804 BNC Modules,” in Appendix B.
Wiring Signals to a DT9800 Standard Series Module

Keep the following recommendations in mind when wiring signals to a DT9800 Standard Series module:

- Follow standard ESD procedures when wiring signals to the module.
- Use individually shielded twisted-pair wire (size 14 to 26 AWG) when using the DT9800 Standard Series module in highly noisy electrical environments.
- Separate power and signal lines by using physically different wiring paths or conduits.
- To avoid noise, do not locate the DT9800 Standard Series module and cabling next to sources that produce high electromagnetic fields, such as large electric motors, power lines, solenoids, and electric arcs, unless the signals are enclosed in a mumetal shield.
- Prevent electrostatic discharge to the I/O while the module is operational.
- Connect all unused analog input channels to analog ground.
- When first installing the module, try wiring the signals as follows:
 - Wire a function generator or a known voltage source to analog input channel 0 using the differential configuration.
 - Wire an oscilloscope or voltage meter to analog output channel 0.
 - Wire a digital input to digital input line 0 of port A.
 - Wire a digital output to digital output line 0 of port B.
 - Wire an external clock or scope to counter/timer channel 0.
 - Then, run the Quick DataAcq application (described in Chapter 5 starting on page 79) to verify that the module is operating properly.
 - Once you have determined that the module is operating properly, wire the signals according to your application’s requirements.

Figure 11 shows the assignments of the screw terminals on DT9800 Standard Series modules. The screw terminal blocks are removable for your convenience.
Connecting Analog Input Signals

DT9800 Standard Series modules support both voltage and current loop inputs.

You can connect analog input signals to a DT9800 Standard Series module in the following configurations:

- **Single-ended** – Choose this configuration when you want to measure high-level signals, noise is not significant, the source of the input is close to the module, and all the input signals are referred to the same common ground. When you choose the single-ended configuration, all 16 analog input channels are available on the DT9800 Standard Series.
- **Pseudo-Differential** – Choose this configuration when noise or common-mode voltage (the difference between the ground potentials of the signal source and the ground of the module or between the grounds of other signals) exists and the differential configuration is not suitable for your application. This option provides less noise rejection than the differential configuration; however, all 16 analog input channels are available on the DT9800 Standard Series.

- **Differential** – Choose this configuration when you want to measure thermocouple or low-level signals (less than 1 V), you are using an A/D converter with high resolution (greater than 12 bits), noise is a significant part of the signal, or common-mode voltage exists. When you choose the differential configuration, eight analog input channels are available on the DT9800 Standard Series.

This section describes how to connect single-ended, pseudo-differential, and differential voltage inputs, as well as current loop and thermocouple inputs to the DT9800 Standard Series module.

Connecting Single-Ended Voltage Inputs

Figure 12 shows how to connect single-ended voltage inputs (channels 0, 1, and 8, in this case) to a DT9800 Standard Series module.

Note: If you are using single-ended inputs, set up the software so that bias return resistance is not used. For more information, refer to page 39.
Connecting Pseudo-Differential Voltage Inputs

Figure 13 shows how to connect pseudo-differential voltage inputs (channels 0, 1, and 8, in this case) to a DT9800 Standard Series module.

![Diagram showing connection of pseudo-differential voltage inputs](image)

Make this connection as close to \(V_{in} \) sources as possible to reduce ground loop errors. \(V_{cm} \) is the common mode voltage for all 16 analog inputs.

Figure 13: Connecting Pseudo-Differential Voltage Inputs
(Shown for Channels 0, 1, and 8)

Note: If you are using pseudo-differential inputs, set up the software so that bias return resistance is not used. For more information, refer to page 39.
Connecting Differential Voltage Inputs

Figure 14A illustrates how to connect a floating signal source to a DT9800 Standard Series module using differential inputs. (A floating signal source is a voltage source that has no connection with earth ground.)

Note: For floating signal sources, we recommend that you provide a bias return path for the differential channels by adding 10 k\(\Omega\) of termination resistance from the low side of the channel to isolated analog ground.

For more information on configuring termination resistance, refer to page 39.

Figure 14B illustrates how to connect a nonfloating signal source to a DT9800 Series module using differential inputs. In this case, the signal source itself provides the bias return path; therefore, you do not need to provide bias return resistance through software.

\(R_s\) is the signal source resistance while \(R_v\) is the resistance required to balance the bridge. Note that the negative side of the bridge supply must be returned to analog ground.
Note that since they measure the difference between the signals at the high (+) and low (−) inputs, differential connections usually cancel any common-mode voltages, leaving only the signal. However, if you are using a grounded signal source and ground loop problems arise, connect the differential signals to the DT9800 Standard Series module as shown in Figure 15. In this case, make sure that the low side of the signal (−) is connected to ground at the signal source, not at the DT9800 Standard Series module, and do not tie the two grounds together.
Connecting Differential Voltage Inputs from a Grounded Signal Source

Figure 15: Connecting Differential Voltage Inputs from a Grounded Signal Source (Shown for Channel 0)

Connecting Current Loop Inputs

Figure 16 shows how to connect a current loop input (channel 0, in this case) to a DT9800 Standard Series module.

We recommend that you software-select 10 kΩ of resistance to connect the low side of channel 0 to analog ground (a physical resistor is not required). Refer to page 39 for more information.
Note: If you are using current loop inputs, set up the software so that bias return resistance is used. For more information, refer to page 39.

Connecting Thermocouple Inputs

The DT9805 and DT9806 modules provide cold junction compensation (CJC) on channel 0 at 10 mV/°C. You can attach up to seven thermocouples to the DT9805 or DT9806 module using channel 0 as a CJC. The accuracy of the CJC is ±1° from 5° to 45° C.

Figure 17 shows how to connect a thermocouple input to channel 1 of a DT9805 or DT9806 module.

We recommend that you software-select 10 kΩ of termination resistance to connect the low side of channels 0 and 1 to analog ground (a physical resistor is not required). Refer to page 39 for more information.

Note: You can connect voltages instead of thermocouples to the DT9805 and DT9806 modules. In this case, ensure that the signal you attach to channel 0 is capable of driving 10 kΩ, and that the signals you attach to channels 1, 2, 3, 4, 5, 6, and 7 are capable of driving 10 MΩ.
Connecting Analog Output Signals

Figure 18 shows how to connect an analog output voltage signal (channel 0, in this case) to a DT9802, DT9804, or DT9806 module.

Figure 18: Connecting Analog Output Voltages (Shown for Channel 0)

Connecting Digital I/O Signals

Figure 19 shows how to connect digital input signals (lines 0 and 1, Port A, in this case) to a DT9800 Standard Series module.

Figure 19: Connecting Digital Inputs (Shown for Lines 0 and 1, Port A)

Figure 20 shows how to connect a digital output (line 0, Port B, in this case) to a DT9800 Standard Series module.
Connecting Counter/Timer Signals

DT9800 Standard Series modules provide two user counter/timer channels that you can use for the following operations:

- Event counting
- Frequency measurement
- Pulse output (rate generation, one-shot, and repetitive one-shot)

This section describes how to connect counter/timer signals to perform these operations. Refer to page 113 for more information on using the counter/timers.

Connecting Event Counting Signals

Figure 21 shows one example of connecting event counting signals to a DT9800 Standard Series module using user counter 0. In this example, rising clock edges are counted while the gate is active.

Figure 21: Connecting Event Counting Signals (Shown for Clock Input 0 and External Gate 0)
Figure 22 shows another example of connecting event counting signals to a DT9800 Standard Series module using user counter 0. In this example, a software gate is used to start the event counting operation; however, this connection is not required.

Figure 22: Connecting Event Counting Signals without an External Gate Input (Shown for Clock Input 0)

Figure 23 shows an example of how to cascade two counters externally to perform an event counting operation using user counters 0 and 1. Note that you can also internally cascade counters using software; if you internally cascade the counters, you do not need to make the external cascading connections.

Figure 23: Cascading Counters (Shown for Event Counting Using Counters 0 and 1 and External Gate 0)
Connecting Frequency Measurement Signals

This section describes two examples of how to connect frequency measurement signals to a DT9800 Standard Series module.

The first configuration uses the same wiring as an event counting application that does not use an external gate signal (see Figure 22 on page 55); a system timer specifies the duration of the frequency measurement. In this configuration, the frequency of the clock input is the number of counts divided by the duration of the Windows timer.

If you need more accuracy than the system timer provides, you can connect a pulse of a known duration (such as a one-shot output of another user counter) to the external gate input, as shown in Figure 24. In this configuration, the frequency of the clock input is the number of counts divided by the period of the external gate input.

![Figure 24: Connecting Frequency Measurement Signals](Shown for Clock Input 0 and External Gate 0)
Connecting Pulse Output Signals

Figure 25 shows one example of connecting pulse output signals to a DT9800 Standard Series module using user counter 0.

Figure 25: Connecting Pulse Output Signals (Shown for Counter Output 0 and Gate 0)

Figure 26 shows an example of how to externally cascade two counters to perform a rate generation operation using user counters 0 and 1. Note that you can also cascade counters internally using software; if you internally cascade the counters, you do not need to make the external cascading connections. In this example, counter 1 gate is logic high.

Figure 26: Cascading Counters (Shown for Rate Generation Using Counters 0 and 1 and External Gate 0)
Figure 27 shows an example of how to cascade two counters externally to perform a one-shot operation using user counters 0 and 1. Note that you can also internally cascade counters using software; if you internally cascade the counters, you do not need to make the external cascading connections. In this example, counter 0 gate is logic high.
Wiring Signals to the EC or EC-I Series

When first installing the module, try wiring the signals as follows:

- Wire a function generator or a known voltage source to analog input channel 0 using the differential configuration.
- Wire an oscilloscope or voltage meter to analog output channel 0.
- Wire a digital input to digital input Port A.
- Wire an external clock or scope to counter/timer channel 0.
- When you finish wiring the signals, run the Quick DataAcq application (described in Chapter 5 starting on page 79) to verify that the module is operating properly.
 Once you have determined that the module is operating properly, wire the signals according to your application’s requirements.

Table 2 lists the pin assignments for connector J6, Table 3 lists the pin assignments for connector J5, and Table 4 lists the pin assignments for connector J4 on the DT9800-EC and DT9800-EC-I Series modules.

CAUTION:

To avoid electrostatic sensitivity, it is recommended that you unplug your DT9800 Series module from the computer before wiring signals.

<table>
<thead>
<tr>
<th>J6 Pin #<sup>a</sup></th>
<th>AC1324 Screw Terminal<sup>a</sup></th>
<th>Signal Name</th>
<th>J6 Pin #<sup>a</sup></th>
<th>AC1324 Screw Terminal<sup>a</sup></th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TB1</td>
<td>Analog Input 0</td>
<td>2</td>
<td>TB2</td>
<td>Analog Input 0 Return/Analog Input 8</td>
</tr>
<tr>
<td>3</td>
<td>TB3</td>
<td>Isolated Analog Ground<sup>b</sup></td>
<td>4</td>
<td>TB4</td>
<td>Analog Input 1 Return/Analog Input 9</td>
</tr>
<tr>
<td>5</td>
<td>TB5</td>
<td>Analog Input 1</td>
<td>6</td>
<td>TB6</td>
<td>Isolated Analog Ground<sup>b</sup></td>
</tr>
<tr>
<td>7</td>
<td>TB7</td>
<td>Analog Input 2</td>
<td>8</td>
<td>TB8</td>
<td>Analog Input 2 Return/Analog Input 10</td>
</tr>
<tr>
<td>9</td>
<td>TB9</td>
<td>Isolated Analog Ground<sup>b</sup></td>
<td>10</td>
<td>TB10</td>
<td>Analog Input 3 Return/Analog Input 11</td>
</tr>
<tr>
<td>11</td>
<td>TB11</td>
<td>Analog Input 3</td>
<td>12</td>
<td>TB12</td>
<td>Isolated Analog Ground<sup>b</sup></td>
</tr>
<tr>
<td>13</td>
<td>TB13</td>
<td>Analog Input 4</td>
<td>14</td>
<td>TB14</td>
<td>Analog Input 4 Return/Analog Input 12</td>
</tr>
<tr>
<td>15</td>
<td>TB15</td>
<td>Isolated Analog Ground<sup>b</sup></td>
<td>16</td>
<td>TB16</td>
<td>Analog Input 5 Return/Analog Input 13</td>
</tr>
<tr>
<td>17</td>
<td>TB17</td>
<td>Analog Input 5</td>
<td>18</td>
<td>TB18</td>
<td>Isolated Analog Ground<sup>b</sup></td>
</tr>
<tr>
<td>J6 Pin #<sup>a</sup></td>
<td>AC1324 Screw Terminal<sup>a</sup></td>
<td>Signal Name</td>
<td>J6 Pin #<sup>a</sup></td>
<td>AC1324 Screw Terminal<sup>a</sup></td>
<td>Signal Name</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>---------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>19</td>
<td>TB19</td>
<td>Analog Input 6</td>
<td>20</td>
<td>TB20</td>
<td>Analog Input 6 Return/Analog Input 14</td>
</tr>
<tr>
<td>21</td>
<td>TB21</td>
<td>Not Connected</td>
<td>22</td>
<td>TB22</td>
<td>Analog Input 7 Return/Analog Input 15</td>
</tr>
<tr>
<td>23</td>
<td>TB23</td>
<td>Analog Input 7</td>
<td>24</td>
<td>TB24</td>
<td>Isolated Analog Ground<sup>b</sup></td>
</tr>
<tr>
<td>25</td>
<td>TB25</td>
<td>Amp Low</td>
<td>26</td>
<td>TB26</td>
<td>External A/D Trigger</td>
</tr>
</tbody>
</table>

^a Analog input signals 8 to 15 are not available on the 5B08 or 7BP08-1 backplane. Analog input signals 4 to 15 are not available on the 7BP04-1 backplane.

^b This signal is not isolated on the DT9800-EC Series.

Table 3: Connector J5 Pin Assignments

<table>
<thead>
<tr>
<th>J5 Pin #</th>
<th>AC1324 Screw Terminal</th>
<th>Signal Name</th>
<th>J5 Pin #</th>
<th>AC1324 Screw Terminal</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TB1</td>
<td>Analog Output 0</td>
<td>2</td>
<td>TB2</td>
<td>Analog Output 0 Return</td>
</tr>
<tr>
<td>3</td>
<td>TB3</td>
<td>Analog Output 1</td>
<td>4</td>
<td>TB4</td>
<td>Analog Output 1 Return</td>
</tr>
<tr>
<td>5</td>
<td>TB5</td>
<td>Isolated Digital Ground<sup>a</sup></td>
<td>6</td>
<td>TB6</td>
<td>External A/D Trigger</td>
</tr>
<tr>
<td>7</td>
<td>TB7</td>
<td>External A/D Sample Clock</td>
<td>8</td>
<td>TB8</td>
<td>Isolated Digital Ground<sup>a</sup></td>
</tr>
<tr>
<td>9</td>
<td>TB9</td>
<td>Isolated +5 V Output<sup>a,b</sup></td>
<td>10</td>
<td>TB10</td>
<td>Not Connected</td>
</tr>
<tr>
<td>11</td>
<td>TB11</td>
<td>Not Connected</td>
<td>12</td>
<td>TB12</td>
<td>Dynamic Digital Output</td>
</tr>
<tr>
<td>13</td>
<td>TB13</td>
<td>Isolated Digital Ground<sup>a</sup></td>
<td>14</td>
<td>TB14</td>
<td>User External Gate 1</td>
</tr>
<tr>
<td>15</td>
<td>TB15</td>
<td>User Counter Output 1</td>
<td>16</td>
<td>TB16</td>
<td>User Clock Input 1</td>
</tr>
<tr>
<td>17</td>
<td>TB17</td>
<td>Isolated Digital Ground<sup>a</sup></td>
<td>18</td>
<td>TB18</td>
<td>User External Gate 0</td>
</tr>
<tr>
<td>19</td>
<td>TB19</td>
<td>User Counter Output 0</td>
<td>20</td>
<td>TB20</td>
<td>User Clock Input 0</td>
</tr>
<tr>
<td>21</td>
<td>TB21</td>
<td>Not Connected</td>
<td>22</td>
<td>TB22</td>
<td>Not Connected</td>
</tr>
<tr>
<td>23</td>
<td>TB23</td>
<td>Not Connected</td>
<td>24</td>
<td>TB24</td>
<td>Not Connected</td>
</tr>
<tr>
<td>25</td>
<td>TB25</td>
<td>Not Connected</td>
<td>26</td>
<td>TB26</td>
<td>Not Connected</td>
</tr>
</tbody>
</table>

^a This signal is not isolated on the DT9800-EC Series.

^b +5 V output is available only when one of the subsystems is activated, which, in turn, activates power to the module. This signal can be used as an input to power the digital output latch so that the outputs retain their states during power down.
Table 4: Connector J4 Pin Assignments

<table>
<thead>
<tr>
<th>J4 Pin #</th>
<th>STP-EZ Screw Terminal</th>
<th>Signal Name</th>
<th>J4 Pin #</th>
<th>STP-EZ Screw Terminal</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TB1</td>
<td>Not Connected</td>
<td>2</td>
<td>TB2</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>3</td>
<td>TB3</td>
<td>Not Connected</td>
<td>4</td>
<td>TB4</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>5</td>
<td>TB5</td>
<td>Not Connected</td>
<td>6</td>
<td>TB6</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>7</td>
<td>TB7</td>
<td>Not Connected</td>
<td>8</td>
<td>TB8</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>9</td>
<td>TB9</td>
<td>Not Connected</td>
<td>10</td>
<td>TB10</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>11</td>
<td>TB11</td>
<td>Not Connected</td>
<td>12</td>
<td>TB12</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>13</td>
<td>TB13</td>
<td>Not Connected</td>
<td>14</td>
<td>TB14</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>15</td>
<td>TB15</td>
<td>Not Connected</td>
<td>16</td>
<td>TB16</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>17</td>
<td>TB17</td>
<td>Digital Output 7</td>
<td>18</td>
<td>TB18</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>19</td>
<td>TB19</td>
<td>Digital Output 6</td>
<td>20</td>
<td>TB20</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>21</td>
<td>TB21</td>
<td>Digital Output 5</td>
<td>22</td>
<td>TB22</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>23</td>
<td>TB23</td>
<td>Digital Output 4</td>
<td>24</td>
<td>TB24</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>25</td>
<td>TB25</td>
<td>Digital Output 3</td>
<td>26</td>
<td>TB26</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>27</td>
<td>TB27</td>
<td>Digital Output 2</td>
<td>28</td>
<td>TB28</td>
<td>Not Connected</td>
</tr>
<tr>
<td>29</td>
<td>TB29</td>
<td>Digital Output 1</td>
<td>30</td>
<td>TB30</td>
<td>Not Connected</td>
</tr>
<tr>
<td>31</td>
<td>TB31</td>
<td>Digital Output 0</td>
<td>32</td>
<td>TB32</td>
<td>Not Connected</td>
</tr>
<tr>
<td>33</td>
<td>TB33</td>
<td>Digital Input 7</td>
<td>34</td>
<td>TB34</td>
<td>Not Connected</td>
</tr>
<tr>
<td>35</td>
<td>TB35</td>
<td>Digital Input 6</td>
<td>36</td>
<td>TB36</td>
<td>Not Connected</td>
</tr>
<tr>
<td>37</td>
<td>TB37</td>
<td>Digital Input 5</td>
<td>38</td>
<td>TB38</td>
<td>Not Connected</td>
</tr>
<tr>
<td>39</td>
<td>TB39</td>
<td>Digital Input 4</td>
<td>40</td>
<td>TB40</td>
<td>Not Connected</td>
</tr>
<tr>
<td>41</td>
<td>TB41</td>
<td>Digital Input 3</td>
<td>42</td>
<td>TB42</td>
<td>Not Connected</td>
</tr>
<tr>
<td>43</td>
<td>TB43</td>
<td>Digital Input 2</td>
<td>44</td>
<td>TB44</td>
<td>Not Connected</td>
</tr>
<tr>
<td>45</td>
<td>TB45</td>
<td>Digital Input 1</td>
<td>46</td>
<td>TB46</td>
<td>Not Connected</td>
</tr>
<tr>
<td>47</td>
<td>TB47</td>
<td>Digital Input 0</td>
<td>48</td>
<td>TB48</td>
<td>Not Connected</td>
</tr>
<tr>
<td>49</td>
<td>TB49</td>
<td>Not Connected</td>
<td>50</td>
<td>TB50</td>
<td>Not Connected</td>
</tr>
</tbody>
</table>
Connecting Analog Input Signals

This section describes how to connect analog input signals to a DT9800-EC or DT9800-EC-I Series module using a 5B01, 5B08, 7BP16-1, 7BP08-1, or 7BP04-1 signal conditioning backplane, or an AC1324 screw terminal panel.

Using 5B or 7B Series Signal Conditioning Modules

When using DT9800-EC or DT9800-EC-I Series modules with 5B and 7B Series signal conditioning backplanes and modules, keep the following considerations in mind:

- The 7BP04-1 backplane maps to single-ended analog input channels 0 to 3.
- The 5B08 and 7BP08-1 backplanes map to single-ended analog input channels 0 to 7.
- By default, the 5B01 and 7BP16-1 backplanes map to single-ended analog input channels 0 to 15. However, you can use channels 14 and 15 on the 5B01 or 7BP16-1 backplane as analog output channels 0 and 1 by configuring DIP switch SW1 on the module. Refer to page 40 for more information on configuring DIP switch SW1.
- Install jumper W3 on the 5B Series backplane to connect Amp Low to Analog Ground on the backplane.
- 5B and 7B Series thermocouple modules provide their own CJC and return a voltage that already compensates for CJC. Therefore, when using 5B or 7B Series modules, you do not have to compensate for offsets.
- The output of many 5B modules is ±5 V. The output of many 7B modules is 0 to 10 V. Ensure that you select an input range that matches the output of the 5B or 7B modules that you are using. For example, if you are using 5B modules that have an output of ±5 V, use a bipolar input range and a gain of 2 on the DT9800-EC Series module.
- Connect all unused inputs to analog common. Reading an open channel can cause settling problems on the next valid channel.

Refer to the 5B Series User’s Manual and 5B Series data sheets or the 7B Series User’s Manual for detailed information on using the backplanes and modules, including how to configure jumpers on the backplane, install modules, wire signals to the modules, and connect power to the backplanes.

Using an AC1324 Screw Terminal Panel

The DT9800-EC and DT9800-EC-I Series modules support both voltage and current loop inputs through connector J6. You attach the AC1324 screw terminal to connector J6 on the DT9800-EC or DT9800-EC-I Series module as shown in Figure 28.
You can connect analog input voltage signals to an AC1324 screw terminal panel in the following configurations:

- **Single-ended** – Choose this configuration when you want to measure high-level signals, noise is not significant, the source of the input is close to the DT9800-EC or DT9800-EC-I Series module, and all the input signals are referred to the same common ground. When you choose the single-ended configuration, all 16 analog input channels are available.

- **Pseudo-Differential** – Choose this configuration when noise or common-mode voltage (the difference between the ground potentials of the signal source and the ground of the DT9800-EC or DT9800-EC-I Series module or between the grounds of other signals) exists and the differential configuration is not suitable for your application. This option provides less noise rejection than the differential configuration; however, all 16 analog input channels are available.

- **Differential** – Choose this configuration when you want to measure low-level signals (less than 1 V), you are using an A/D converter with high resolution (greater than 12 bits), noise is a significant part of the signal, or common-mode voltage exists. When you choose the differential configuration, eight analog input channels are available.

Note: We recommend that you connect all unused analog input channels to analog ground.

Keep the following recommendations in mind when wiring analog input signals to the AC1324 screw terminal panel:

- Use individually shielded twisted-pair wire (size 14 to 26 AWG) when using the DT9800-EC or DT9800-EC-I Series module and AC1324 in highly noisy electrical environments.

- Separate power and signal lines by using physically different wiring paths or conduits.
To avoid noise, do not locate the DT9800-EC or DT9800-EC-I Series module, AC1324, and cabling next to sources that produce high electromagnetic fields, such as large electric motors, power lines, solenoids, and electric arcs, unless the signals are enclosed in a mumetal shield.

Prevent electrostatic discharge to the I/O while the module is operational.

This section describes how to connect single-ended, pseudo-differential, and differential voltage inputs, as well as current loop inputs to the AC1324 screw terminal panel. For a description of the screw terminal blocks on the AC1324 screw terminal panel, refer to Table 2 on page 59.

Connecting Single-Ended Voltage Inputs

Figure 29 shows how to connect single-ended voltage inputs (channels 0, 1, and 2, in this case) to the AC1324 screw terminal panel.

*Ensure that you connect Isolated Analog Ground to Amp Low. Note that this signal is not isolated on the DT9800-EC Series.

Note: If you are using single-ended inputs, set up the software so that bias return resistance is not used. For more information, refer to page 39.
Connecting Pseudo-Differential Voltage Inputs

Figure 30 shows how to connect pseudo-differential voltage inputs (channels 0, 1, and 2, in this case) to the AC1324 screw terminal panel.

Note: If you are using pseudo-differential inputs, set up the software so that bias return resistance is not used. For more information, refer to page 39.

Connecting Differential Voltage Inputs

Figure 31A illustrates how to connect a floating signal source to a DT9800-EC or DT9800-EC-I Series module using differential inputs. (A floating signal source is a voltage source that has no connection with earth ground.)

For floating signal sources, it is recommended that you provide a bias return path for the differential channels by adding 10 kΩ of termination resistance from the low side of the channel to isolated analog ground. For more information on configuring the bias return resistance, refer to page 39.
Note: Analog ground is not isolated on the DT9800-EC Series.

Figure 31B illustrates how to connect a nonfloating signal source to a DT9800-EC or DT9800-EC-I Series module using differential inputs. In this case, the signal source itself provides the bias return path; therefore, you do not need to provide bias return resistance through software.

\(R_s \) is the signal source resistance while \(R_v \) is the resistance required to balance the bridge. Note that the negative side of the bridge supply must be returned to analog ground.

When configuring the DT9800 Series Device Driver, we recommend that you software-select 10 kΩ of resistance to connect the low side of channel 0 to analog ground (a physical resistor is not required). For more information, refer to page 39.

Figure 31: Connecting Differential Voltage Inputs (Shown for Channel 0)
Note that since they measure the difference between the signals at the high (+) and low (−) inputs, differential connections usually cancel any common-mode voltages, leaving only the signal. However, if you are using a grounded signal source and ground loop problems arise, connect the differential signals to the AC1324 screw terminal panel as shown in Figure 32. In this case, make sure that the low side of the signal (−) is connected to ground at the signal source, not at the AC1324 screw terminal panel, and do not tie the two grounds together.

*This signal is not isolated on the DT9800-EC Series.

When configuring the DT9800 Series Device Driver, we recommend that you software-select 10 kΩ of resistance to connect the low side of channel 0 to analog ground (a physical resistor is not required). For more information, refer to page 39.

Figure 32: Connecting Differential Voltage Inputs from a Grounded Signal Source (Shown for Channel 0)
Connecting Current Loop Inputs

Figure 33 shows how to connect a current loop input (channel 0, in this case) to an AC1324 screw terminal panel.

![Diagram of connecting current inputs](image)

Note: If you are using current loop inputs, set up the software so that bias return resistance is used. For more information, refer to page 39.
Connecting Analog Output Signals

The DT9800-EC and DT9800-EC-I Series modules support analog outputs through connector J5. This section shows how to wire analog output signals to an AC1324 screw terminal panel attached to connector J5.

You attach the AC1324 screw terminal to connector J5 on the DT9800-EC or DT9800-EC-I Series module as shown in Figure 34.

Figure 34: Attaching the AC1324 Screw Terminal Panel to Connector J5 of the DT9800-EC/EC-I Series for Analog Outputs

Figure 35 shows how to connect an analog output voltage signal (channel 0, in this case) to an AC1324 screw terminal. For a description of the screw terminal blocks, refer to Table 3 on page 60.

Figure 35: Connecting Analog Output Voltages Using an External +10 V Reference (Shown for Channel 0)
Connecting Digital I/O Signals

The DT9800-EC and DT9800-EC-I Series modules support digital I/O signals through connector J4. This section shows how to wire digital I/I signals to an STP-EZ screw terminal panel attached to connector J4.

You attach the STP-EZ screw terminal to connector J4 on the DT9800-EC or DT9800-EC-I Series module as shown in Figure 36.

Figure 36: Attaching the STP-EZ Screw Terminal Panel to Connector J4 of the DT9800-EC/EC-I Series for Digital I/O

Figure 37 shows how to connect digital input signals (lines 0 and 1 of Port A, in this case) to an STP-EZ screw terminal. For a description of the screw terminal blocks, refer to Table 4 on page 61.
Figure 37: Connecting Digital Inputs (Shown for Lines 0 and 1, Port A)

Figure 38 shows how to connect a digital output (line 0 of Port B, in this case) to an STP-EZ screw terminal panel.

Figure 38: Connecting Digital Outputs (Shown for Line 0, Port B)
If you want the digital outputs to retain their values during power down, you must connect +5 V external power to the +5 V isolated power signal of connector J5 on the module and activate one of the subsystems on the module, which, in turn, activates power to the module.

Figure 39 shows how to connect the AC1324 screw terminal to connector J5 on the DT9800-EC or DT9800-EC-I Series module.

Figure 39: Attaching the AC1324 Screw Terminal Panel to Connector J5 of the DT9800-EC/EC-I Series Module for +5 V Power

Figure 40 shows how to wire +5 V external power to the AC1315 screw terminal panel.

Figure 40: Connecting +5V External Power to Retain Digital Output States
Connecting Counter/Timer Signals

The DT9800-EC and DT9800-EC-I Series modules support two counter/timer channels through connector J5. This section shows how to wire counter/timer signals to an AC1324 screw terminal panel attached to connector J5.

You attach the AC1324 screw terminal to connector J5 on the DT9800-EC or DT9800-EC-I Series module as shown in Figure 41.

You can use these counter/timer channels for the following operations:

- Event counting
- Frequency measurement
- Pulse output (rate generation, one-shot, and repetitive one-shot)

The following sections describe how to wire counter/timer signals to an AC1324 screw terminal panel to perform these operations. For a description of the screw terminal blocks, refer to Table 3 on page 60.
Connecting Event Counting Signals

Figure 42 shows one example of connecting event counting signals to user counter 0 using an AC1324 screw terminal panel attached to connector J5. In this example, rising clock edges are counted while the gate is active.

![Diagram showing connection of event counting signals](image)

Figure 42: Connecting Event Counting Signals
(Shown for Clock Input 0 and External Gate 0)

Figure 43 shows another example of connecting event counting signals to user counter 0 using an AC1324 screw terminal panel attached to connector J5. In this example, a software gate is used to start the event counting operation; however, this connection is not required.
Figure 43: Connecting Event Counting Signals without an External Gate Input
(Shown for Clock Input 0)

Figure 44 shows an example of how to cascade counters 0 and 1 externally to perform an event counting operation using an AC1324 screw terminal panel attached to connector J5. Note that you can also internally cascade counters using software; if you internally cascade the counters, you do not need to make the external cascading connections.

Figure 44: Cascading Counters (Shown for Event Counting Using Counters 0 and 1 and External Gate 0)

*This signal is not isolated on the DT9800-EC Series.
Connecting Frequency Measurement Signals

This section describes two examples of how to connect frequency measurement signals to an AC1324 screw terminal panel attached to connector J5.

The first configuration uses the same wiring as an event counting application that does not use an external gate signal (see Figure 43 on page 75); the software uses the Windows timer to specify the duration of the frequency measurement. In this configuration, the frequency of the clock input is the number of counts divided by the duration of the Windows timer.

If you need more accuracy than the Windows timer provides, you can connect a pulse of a known duration (such as a one-shot output of another user counter) to the external gate input, as shown in Figure 45. In this configuration, the frequency of the clock input is the number of counts divided by the period of the external gate input.

*This signal is not isolated on the DT9800-EC Series.

Figure 45: Connecting Frequency Measurement Signals
(Shown for Clock Input 0 and External Gate 0)
Connecting Pulse Output Signals

Figure 46 shows one example of connecting pulse output signals to user counter 0 using an AC1324 screw terminal panel attached to connector J5.

![Diagram of Connecting Pulse Output Signals](image)

*This signal is not isolated on the DT9800-EC Series.

Figure 46: Connecting Pulse Output Signals
(Shown for Counter Output 0 and Gate 0)

Figure 47 shows an example of how to externally cascade user counters 0 and 1 to perform a rate generation operation using an AC1324 screw terminal panel attached to connector J5. Note that you can also cascade counters internally using software; if you internally cascade the counters, you do not need to make the external cascading connections. In this example, counter 1 gate is logic high.
Figure 47: Cascading Counters (Shown for Rate Generation Using Counters 0 and 1 and External Gate 0)

Figure 48 shows an example of how to cascade user counters 0 and 1 externally to perform a one-shot operation using an AC1324 screw terminal panel attached to connector J5. Note that you can also internally cascade counters using software; if you internally cascade the counters, you do not need to make the external cascading connections. In this example, counter 0 gate is logic high.

Figure 48: Cascading Counters (Shown for One-Shot Using Counters 0 and 1 and External Gate 1)
Verifying the Operation of a Module

Running the Quick DataAcq Application ... 81
Testing Single-Value Analog Input ... 82
Testing Single-Value Analog Output .. 83
Testing Continuous Analog Input ... 84
Testing Single-Value Digital Input .. 85
Testing Single-Value Digital Output ... 86
Testing Frequency Measurement ... 87
Testing Pulse Output ... 88
You can verify the operation of a DT9800 Series module using the Quick DataAcq application. Quick DataAcq allows you to do the following:

- Acquire data from a single analog input channel or digital input port
- Acquire data continuously from one or more analog input channels using an oscilloscope, strip chart, or Fast Fourier Transform (FFT) view
- Measure the frequency of events
- Output data from a single analog output channel or digital output port
- Output pulses either continuously or as a one-shot
- Save the input data to disk
Running the Quick DataAcq Application

The Quick DataAcq application is installed automatically when you install the driver software.

To run the Quick DataAcq application, do the following:

1. If you have not already done so, power up your computer and any attached peripherals.
2. Click Start from the Task Bar.
3. Browse to Programs | Data Translation, Inc | DT-Open Layers for Win32 | QuickDataAcq.
 The main menu appears.

Note: The Quick DataAcq application allows you to verify basic operations on the board; however, it may not support all of the board’s features.

For information on each of the features provided, use the online help for the Quick DataAcq application by pressing F1 from any view or selecting the Help menu. If the system has trouble finding the help file, navigate to C:\Program Files\Data Translation\Win32\dtddataacq.hlp, where C: is the letter of your hard disk drive.
Testing Single-Value Analog Input

To verify that the module can read a single analog input value, do the following:

1. Connect a voltage source, such as a function generator, to analog input channel 0 (differential mode) on the DT9800 Series module. Refer to page 49 (for the DT9800 Standard Series) or page 66 (for the DT9800-EC Series) for an example of how to connect a differential analog input.

2. In the Quick DataAcq application, choose Single Analog Input from the Acquisition menu.

3. Select the appropriate DT9800 Series module from the Board list box. Once you select the module, the LED on the module turns red.

4. In the Channel list box, select analog input channel 0.

5. In the Range list box, select the range for the channel. The default is ±10 V.

7. Click Get to acquire a single value from analog input channel 0. The application displays the value on the screen in both text and graphical form.
Testing Single-Value Analog Output

To verify that the module can output a single analog output value, do the following:

1. Connect an oscilloscope or voltmeter to DAC0 on the module. Refer to page 53 (for the DT9802, DT9804, or DT9806) or page 69 (for the DT9802-EC, DT9802-EC-I, DT9804-EC, or DT9804-EC-I) for an example of how to connect analog output signals.

2. In the Quick DataAcq application, select Single Analog Output from the Control menu.

3. Select the appropriate DT9800 Series module from the Board list box. Once you select the module, the LED on the module turns red.

4. In the Channel list box, select analog output channel 0.

5. In the Range list box, select the output range of DAC0. The default is ±10 V.

6. Enter an output value, or use the slider to select a value to output from DAC0.

7. Click Send to output a single value from DAC0. The application displays the output value on the screen in both text and graphical form.
Test your Continuous Analog Input

To verify that the module can perform a continuous analog input operation, do the following:

1. Connect known voltage sources, such as the outputs of a function generator, to analog input channels 0 and 1 on the DT9800 Series module (using the differential configuration). Refer to page 50 (for the DT9800 Standard Series) or page 66 (for the DT9800-EC or DT9800-EC-I Series) for an example of how to connect a differential analog input.

2. In the Quick DataAcq application, choose Scope from the Acquisition menu.

3. Select the appropriate DT9800 Series module from the Board list box. Once you select the module, the LED on the module turns red.

4. In the Sec/Div list box, select the number of seconds per division (.1 to .00001) for the display.

5. In the Channel list box, select analog input channel 1, and then click Add to add the channel to the channel list. Note that, by default, channel 0 is included in the channel list.

6. Click Config from the Toolbar.

7. In the Config dialog, select ChannelType, and then select Differential.

8. In the Config dialog, select Range, and then select Bipolar or Unipolar depending on the configuration of your module. The default is Bipolar.

9. From the Scope view, double-click the input range of the channel to change the input range of the module (±10 V, ±5 V, ±2.5 V, ±1.25 V for bipolar ranges or 0 to 10 V, 0 to 5 V, 0 to 2.5 V or 0 to 1.25 V for unipolar ranges). The default is ±10 V. The display changes to reflect the selected range for all the analog input channels on the module.

10. In the Trigger box, select Auto to acquire data continuously from the specified channels or Manual to acquire a burst of data from the specified channels.

11. Click Start from the Toolbar to start the continuous analog input operation. The application displays the values acquired from each channel in a unique color on the oscilloscope view.

12. Click Stop from the Toolbar to stop the operation.
Testing Single-Value Digital Input

To verify that the module can read a single digital input value, do the following:

1. Connect a digital input to digital input line 0 of port A on the DT9800 Series module. Refer to page 53 (for the DT9800 Standard Series) or page 70 (for the DT9800-EC or DT9800-EC-I Series) for an example of how to connect a digital input.

2. In the Quick DataAcq application, choose Digital Input from the Acquisition menu.

3. Select the appropriate DT9800 Series module from the Board list box. Once you select the module, the LED on the module turns red.

4. Select digital input port A by clicking Port A.

5. Click Get.

The application displays the value of each digital input line in port A on the screen in both text and graphical form.
Testing Single-Value Digital Output

To verify that the module can output a single digital output value, do the following:

1. Connect a digital output to digital output line 0 of port B on the DT9800 Series module. Refer to page 53 (for the DT9800 Standard Series) or page 70 (for the DT9800-EC or DT9800-EC-I Series) for an example of how to connect a digital output.

2. In the Quick DataAcq application, select Digital Output from the Control menu.

3. Select the appropriate DT9800 Series module from the Board list box. Once you select the module, the LED on the module turns red.

4. Select digital output port B by clicking Port B.

5. Click the appropriate bits to select the type of signal to write from the digital output lines. If the bit is selected, a high-level signal is output from the digital output line; if the bit is not selected, a low-level signal is output from the digital output line. Optionally, you can enter an output value in the Hex text box.

6. Click Send. The application outputs and displays the value of each digital output line of digital port B on the screen in both text and graphical form.
Testing Frequency Measurement

To verify that the module can perform a frequency measurement operation, do the following:

1. Wire an external clock source to counter/timer 0 on the DT9800 Series module. Refer to page 56 (for the DT9800 Standard Series) or page 76 (for the DT9800-EC or DT9800-EC-I Series) for an example of how to connect an external clock.

 Note: The Quick DataAcq application works only with counter/timer 0.

2. In the Quick DataAcq application, choose **Frequency Counter** from the **Acquisition** menu.

3. Select the appropriate DT9800 Series module from the **Board** list box. Once you select the module, the LED on the module turns red.

4. In the **Count Duration** text box, enter the number of seconds during which events will be counted.

5. Click **Start** to start the frequency measurement operation. The operation automatically stops after the number of seconds you specified has elapsed, and the application displays the frequency on the screen.

If you want to stop the frequency measurement operation when it is in progress, click **Stop**.
Testing Pulse Output

To verify that the module can perform a pulse output operation, do the following:

1. Connect a scope to counter/timer 0 on the DT9800 Series module. Refer to page 57 (for the DT9800 Standard Series) or page 77 (for the DT9800-EC or DT9800-EC-I Series) for an example of how to connect a scope (a pulse output) to counter/timer 0.

 Note: The Quick DataAcq application works only with counter/timer 0.

2. In the Quick DataAcq application, choose **Pulse Generator** from the **Control** menu.

3. Select the appropriate DT9800 Series module from the **Board** list box.

 Once you select the module, the LED on the module turns red.

4. Select either **Continuous** to output a continuous pulse stream or **One Shot** to output one pulse.

5. Select either **Low-to-high** to output a rising-edge pulse (the high portion of the total pulse output period is the active portion of the signal) or **High-to-low** to output a falling-edge pulse (the low portion of the total pulse output period is the active portion of the signal).

6. Under **Pulse Width**, enter a percentage or use the slider to select a percentage for the pulse width. The percentage determines the duty cycle of the pulse.

7. Click **Start** to generate the pulse(s).

 The application displays the results both in text and graphical form.

8. Click **Stop** to stop a continuous pulse output operation. One-shot pulse output operations stop automatically.
Part 2: Using Your Module
Principles of Operation

Analog Input Features ... 93
Analog Output Features ... 108
Digital I/O Features ... 111
Counter/Timer Features .. 113
Figure 49 shows a block diagram of the DT9800 Series modules. Note that bold entries indicate signals you can access.

Figure 49: Block Diagram of the DT9800 Series Modules
Analog Input Features

This section describes the features of the analog input (A/D) subsystem, including the following:

- Input resolution, described below
- Analog input channels, described on page 94
- Input ranges and gains, described on page 96
- A/D sample clock sources, described on page 98
- Analog input conversion modes, described on page 100
- Triggers, described on page 100
- Data formats, described on page 104
- Data transfer, described on page 107
- Error conditions, described on page 107

Input Resolution

Table 5 lists the input resolution of the DT9800 Series modules. Note that the resolution is fixed; it cannot be programmed in software.

<table>
<thead>
<tr>
<th>Function Module Series</th>
<th>Module Name</th>
<th>Input Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard</td>
<td>DT9801</td>
<td>12 bit</td>
</tr>
<tr>
<td></td>
<td>DT9802</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9803</td>
<td>16 bit</td>
</tr>
<tr>
<td></td>
<td>DT9804</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9805</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9806</td>
<td></td>
</tr>
<tr>
<td>DT9800-EC Series</td>
<td>DT9801-EC</td>
<td>12 bit</td>
</tr>
<tr>
<td></td>
<td>DT9802-EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9803-EC</td>
<td>16 bit</td>
</tr>
<tr>
<td></td>
<td>DT9804-EC</td>
<td></td>
</tr>
<tr>
<td>DT9800-EC-I Series</td>
<td>DT9801-EC-I</td>
<td>12 bit</td>
</tr>
<tr>
<td></td>
<td>DT9802-EC-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9803-EC-I</td>
<td>16 bit</td>
</tr>
<tr>
<td></td>
<td>DT9804-EC-I</td>
<td></td>
</tr>
</tbody>
</table>
Chapter 6

Analog Input Channels

All DT9800 Series modules support 16 single-ended or pseudo-differential analog input channels or eight differential analog input channels. In addition, the DT9805 and DT9806 modules provide a cold junction compensation (CJC) circuit on channel 0 at 10 mV/°C. Using the CJC, you can connect seven thermocouple inputs (in differential mode) to the DT9805 or DT9806 module.

You configure the channel type as single-ended or differential through software. Using software, you can also select whether to use 10 kΩ termination resistance between the low side of each differential channel and isolated analog ground. This feature is particularly useful with floating signal sources. Refer to Chapter 4 for more information on wiring to inputs. Refer to Chapter 3 for information on configuring the driver to use bias return termination resistance.

Note: For pseudo-differential inputs, specify single-ended in software; in this case, how you wire these signals determines the configuration.

DT9800-EC Series modules do not provide isolated analog ground.

The DT9800 Series modules can acquire data from a single analog input channel or from a group of analog input channels. Channels are numbered 0 to 15 for single-ended and pseudo-differential inputs, and 0 to 7 for differential inputs. The following subsections describe how to specify the channels.

Specifying a Single Channel

The simplest way to acquire data from a single channel is to specify the channel for a single-value analog input operation using software; refer to page 100 for more information on single-value operations.

You can also specify a single channel using the analog input channel list, described in the next section.

Note: If you want to perform a single-value digital input operation while the A/D subsystem is configured, specify channel 16 (which corresponds to the digital input port) in the A/D single-value operation.

Specifying One or More Channels

You can read data from one or more analog input channels using an analog input channel list. You can group the channels in the list sequentially (starting either with 0 or with any other analog input channel) or randomly. You can also specify a single channel or the same channel more than once in the list.
Using software, specify the channels in the order you want to sample them. You can enter up to 32 entries in the channel list. The channels are read in order (using continuously paced scan mode or triggered scan mode) from the first entry to the last entry in the channel list. Refer to page 100 for more information on the supported conversion modes.

Specifying Digital Input Lines in the Analog Input Channel List

In addition to the analog input channels, the DT9800 Series modules allow you to read eight digital input lines (Port A, lines 0 to 7) using the analog input channel list. This feature is particularly useful when you want to correlate the timing of analog and digital events.

To read these eight digital input lines, specify channel 16 in the analog input channel list. You can enter channel 16 anywhere in the list and can enter it more than once, if desired.

Notes: For DT9800 Series modules, the value of digital input bits 0 to 7 is returned in the upper eight bits (8-15) of the sample for channel 16.

If channel 16 is the only channel in the channel list, the module can read this channel at the maximum A/D sampling rate.

The digital channel is treated like any other channel in the analog input channel list; therefore, all the clocking, triggering, and conversion modes supported for analog input channels are supported for these digital input lines, if you specify them this way.

Performing Dynamic Digital Output Operations

Note: This feature is supported in the DataAcq SDK. It is not supported in the DT-Open Layers for .NET Class Library.

Using software, you can enable a synchronous dynamic digital output operation for the A/D subsystem. This feature is particularly useful for synchronizing and controlling external equipment.

One dynamic digital output line (0) is provided (screw terminal 46). This line is set to a value of 0 on power up; a reset does not affect the values of the dynamic digital output line. Note that this line is provided in addition to the other eight digital output lines; see page 111 for more information on the digital I/O features.

You specify the value (0 or 1) to write from the dynamic digital output line using a digital channel list. A value of 0 indicates a low-level signal; a value of 1 indicates a high-level signal.

The digital channel list corresponds to the analog input channel list. As each entry in the analog input channel list is read, the corresponding value you specified in the digital channel list is output to the dynamic digital output line.
For example, assume that the analog input channel list contains channels 0, 1, 2, and 3; that dynamic digital output operations are enabled; and that the values in the digital channel list are 1, 0, 0, 1. Figure 50 shows this configuration.

![Figure 50: An Example Using Dynamic Digital Outputs](image)

As analog input channel 0 is read, a high-level signal is output to the dynamic digital output line. As analog input channels 1 and 2 are read, a low-level signal is output to the dynamic digital output line. As analog input channel 3 is read, a high-level signal is output to the dynamic digital output line.

On power up, a value of 0 is written to the dynamic digital output line.

Input Ranges and Gains

Table 6 lists the supported gains and effective input range of each DT9800 Series module.
Using software, specify 0 to 10 V for unipolar ranges or −10 V to +10 V for bipolar ranges. Note that you specify the range for the entire analog input subsystem, not the range per channel.

Table 6: Effective Input Range

<table>
<thead>
<tr>
<th>Function Module Series</th>
<th>Module Name</th>
<th>Gain</th>
<th>Unipolar Input Range</th>
<th>Bipolar Input Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard</td>
<td>DT9801</td>
<td>1</td>
<td>0 to 10 V</td>
<td>±10 V</td>
</tr>
<tr>
<td></td>
<td>DT9802</td>
<td>2</td>
<td>0 to 5 V</td>
<td>±5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0 to 2.5 V</td>
<td>±2.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0 to 1.25 V</td>
<td>±1.25 V</td>
</tr>
<tr>
<td>DT9803</td>
<td>DT9804</td>
<td>1</td>
<td>N/A</td>
<td>±10 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>N/A</td>
<td>±5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>N/A</td>
<td>±2.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>N/A</td>
<td>±1.25 V</td>
</tr>
<tr>
<td>DT9805</td>
<td>DT9806</td>
<td>1</td>
<td>N/A</td>
<td>±10 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>N/A</td>
<td>±1 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>N/A</td>
<td>±0.10 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>500</td>
<td>N/A</td>
<td>±0.020 V</td>
</tr>
<tr>
<td>DT9800-EC Series</td>
<td>DT9801-EC</td>
<td>1</td>
<td>0 to 10 V</td>
<td>±10 V</td>
</tr>
<tr>
<td></td>
<td>DT9802-EC</td>
<td>2</td>
<td>0 to 5 V</td>
<td>±5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0 to 2.5 V</td>
<td>±2.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0 to 1.25 V</td>
<td>±1.25 V</td>
</tr>
<tr>
<td>DT9803-EC</td>
<td>DT9804-EC</td>
<td>1</td>
<td>N/A</td>
<td>±10 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>N/A</td>
<td>±5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>N/A</td>
<td>±2.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>N/A</td>
<td>±1.25 V</td>
</tr>
<tr>
<td>DT9800-EC-I Series</td>
<td>DT9801-EC-I</td>
<td>1</td>
<td>0 to 10 V</td>
<td>±10 V</td>
</tr>
<tr>
<td></td>
<td>DT9802-EC-I</td>
<td>2</td>
<td>0 to 5 V</td>
<td>±5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>0 to 2.5 V</td>
<td>±2.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>0 to 1.25 V</td>
<td>±1.25 V</td>
</tr>
<tr>
<td>DT9803-EC-I</td>
<td>DT9804-EC-I</td>
<td>1</td>
<td>N/A</td>
<td>±10 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>N/A</td>
<td>±5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>N/A</td>
<td>±2.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>N/A</td>
<td>±1.25 V</td>
</tr>
</tbody>
</table>
For each channel, choose the gain that has the smallest effective range that includes the signal you want to measure. For example, if you are using a DT9803 and the range of your analog input signal is ±1.05 V, specify a range of −10 V to +10 V for the module and use a gain of 8 for the channel; the effective input range for this channel is then ±1.25 V, which provides the best sampling accuracy for that channel.

Note: If you are using the DataAcq SDK, the DT9805 and DT9806 modules support autoranging for single-value operations, where the module determines the appropriate gain for your range rather than you having to specify it. This feature is not supported in the DT-Open Layers for .NET Class Library. Refer to page 100 for more information on using autoranging.

The simplest way to specify gain for a single channel is to specify the gain for a single-value analog input operation using software; refer to page 100 for more information on single-value operations.

If you are using an analog input channel list, you can use software to specify the gain for each analog input channel entry in the analog input channel list.

Note: For analog input channel 16 (the eight digital input lines) in the channel list, specify a gain of 1 in the gain list.

A/D Sample Clock Sources

DT9800 Series modules allow you to use one of the following clock sources to pace analog input operations in continuous mode:

- The internal A/D sample clock, which uses the 24-bit A/D Counter on the module
- An external A/D sample clock, which you can connect directly to the screw terminals on the module

You use an A/D sample clock to pace the acquisition of each channel in the channel list; this clock is also called the A/D pacer clock.

Note: If you enter digital input channel 16 in the channel list, the A/D sample clock (internal or external) also paces the acquisition of the eight digital input lines.

The following subsections describe the internal and external A/D sample clocks in more detail.
Internal A/D Sample Clock

The internal A/D sample clock uses a 12 MHz time base. Conversions start on the rising edge of the counter output; the output pulse is active low.

Using software, specify the clock source as internal and the clock frequency at which to pace the operation. The minimum frequency supported is 0.75 Hz (0.75 Samples/s); the maximum frequency supported depends on the module type. Table 7 lists the maximum sampling rate of the DT9800 Series modules.

Table 7: Maximum Sampling Rate

<table>
<thead>
<tr>
<th>Function Module Series</th>
<th>Module Name</th>
<th>Sampling Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard</td>
<td>DT9801</td>
<td>100 kSamples/s</td>
</tr>
<tr>
<td></td>
<td>DT9802</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9803</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9804</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9805(^a)</td>
<td>50 kSamples/s</td>
</tr>
<tr>
<td></td>
<td>DT9806(^a)</td>
<td></td>
</tr>
<tr>
<td>DT9800-EC</td>
<td>DT9801-EC</td>
<td>100 kSamples/s</td>
</tr>
<tr>
<td></td>
<td>DT9802-EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9803-EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9804-EC</td>
<td></td>
</tr>
<tr>
<td>DT9800-EC-I</td>
<td>DT9801-EC-I</td>
<td>100 kSamples/s</td>
</tr>
<tr>
<td></td>
<td>DT9802-EC-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9803-EC-I</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9804-EC-I</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\) The maximum rate is 50 kSamples/s for a single channel or a channel scan when the gain is 1 or 10, 10 kSamples/s for a channel scan when the gain is 100, and 2 kSamples/s for a channel scan when the gain is 500.

According to sampling theory (Nyquist Theorem), specify a frequency that is at least twice as fast as the input’s highest frequency component. For example, to accurately sample a 20 kHz signal, specify a sampling frequency of at least 40 kHz. Doing so avoids an error condition called aliasing, in which high frequency input components erroneously appear as lower frequencies after sampling.

External A/D Sample Clock

An external A/D sample clock is useful when you want to pace acquisitions at rates not available with the internal A/D sample clock or when you want to pace at uneven intervals.

Connect an external A/D sample clock to screw terminal TB25 on the DT9800 Series module (pin 25 on connector J1). Conversions start on the rising edge of the external A/D sample clock input signal.
Using software, specify the clock source as external. For DT9800 Series modules, the clock frequency is always equal to the frequency of the external A/D sample clock input signal that you connect to the module.

Triggers

A trigger is an event that occurs based on a specified set of conditions. The DT9800 Series module supports the following trigger sources:

- **Software trigger** – A software trigger event occurs when you start the analog input operation (the computer issues a write to the module to begin conversions). Using software, specify the trigger source as a software trigger.

- **External trigger** – An external digital trigger event occurs when the DT9800 Series module detects a rising edge on the Ext A/D Trigger input signal connected to screw terminal TB24 on the DT9800 Series module (pin 24 of connector J1). The trigger signal is TTL-compatible. Using software, specify the trigger source as an external, positive, digital (TTL) trigger.

Analog Input Conversion Modes

DT9800 Series modules support the following conversion modes:

- **Single-value operations** are the simplest to use. Using software, you can either specify the range, gain, and analog input channel. The module acquires the data from the specified channel and returns the data immediately. For a single-value operation, you cannot specify a clock source, trigger source, scan mode, or buffer.

 Note: If you are using the DataAcq SDK with a DT9805 or DT9806 module, you can specify the range and analog input channel and have the software determine the best gain for the range (called autoranging). Auto-ranging is not supported in the DT-Open Layers for .NET Class Library.

Single-value operations stop automatically when finished; you cannot stop a single-value operation.

- **Scan mode** takes full advantage of the capabilities of the DT9800 Series modules. In a scan, you can specify a channel list, clock source, trigger source, scan mode, and buffer using software. Two scan modes are supported: continuously paced scan mode and triggered scan mode (often called burst mode). These modes are described in the following subsections.

 Using software, you can stop a scan by performing either an orderly stop or an abrupt stop. In an orderly stop, the module finishes acquiring the data, stops all subsequent acquisition, and transfers the acquired data to host memory; all subsequent triggers or retriggers are ignored.

 In an abrupt stop, the module stops acquiring samples immediately; the acquired data is not transferred to host memory, and all subsequent triggers or retriggers are ignored.
Note: On DT9800 Series modules, you cannot perform a single-value digital input operation when an analog input scan is in progress due to the opto-isolators on the module. To perform a single-value digital input operation, ensure that the analog input subsystem is not running.

Continuously Paced Scan Mode

Use continuously paced scan mode if you want to accurately control the period between conversions of individual channels in a scan.

When it detects an initial trigger, the module cycles through the channel list, acquiring and converting the value for each entry in the list (this process is defined as the scan). The module then wraps to the start of the channel list and repeats the process continuously until either the allocated buffers are filled or until you stop the operation. Refer to page 107 for more information on buffers.

The conversion rate is determined by the frequency of the A/D sample clock; refer to page 98 for more information on the A/D sample clock. The sample rate, which is the rate at which a single entry in the channel list is sampled, is determined by the frequency of the A/D sample clock divided by the number of entries in the channel list.

To select continuously paced scan mode, use software to specify the dataflow as continuous and to specify a trigger source to start the operation. Refer to page 100 for more information on the supported trigger sources.

Figure 51 illustrates continuously paced scan mode using a channel list with three entries: channel 0, channel 1, and channel 2. In this example, analog input data is acquired on each clock pulse of the A/D sample clock. When it reaches the end of the channel list, the module wraps to the beginning of the channel list and repeats this process. Data is acquired continuously.

![Figure 51: Continuously Paced Scan Mode](image-url)
Triggered Scan Mode

DT9800 Series modules support two triggered scan modes: software-retriggered and externally-retriggered. These modes are described in the following subsections.

Software-Retriggered Scan Mode

Use software-retriggered scan mode if you want to accurately control both the period between conversions of individual channels in a scan and the period between each scan. This mode is useful when synchronizing or controlling external equipment or when acquiring a buffer of data on each trigger or retrigger.

When it detects an initial trigger (either a software trigger or an external trigger), the DT9800 Series module scans the channel list once, then waits for a software retrigger to occur. When it detects a software retrigger, the module scans the channel list once again, then waits for another software retrigger to occur. The process repeats continuously until either the allocated buffers are filled or until you stop the operation; refer to page 107 for more information on buffers.

The sample rate is determined by the frequency of the A/D sample clock divided by the number of entries in the channel list; refer to page 98 for more information on the A/D sample clock. The conversion rate of each scan is determined by the frequency of the Triggered Scan Counter on the module; the Triggered Scan Counter is a 24-bit counter with a 12 MHz clock.

Figure 52 illustrates triggered scan mode. In this example, post-trigger analog input data is acquired on each clock pulse of the A/D sample clock until the channel list has been scanned once; then, the module waits for the retrigger event. When the retrigger event occurs, the module scans the channel list once again, acquiring data on each pulse of the A/D sample clock. The process repeats continuously with every specified retrigger event.

![Figure 52: Triggered Scan Mode](image)

Specify the frequency of the internal retrigger clock using software. The minimum retrigger frequency is 0.75 Hz (0.75 Samples/s); the maximum retrigger rate of each DT9800 Series module is listed in Table 8 on page 103.
The appropriate retrigger frequency depends on a number of factors, determined by the following equations:

\[
\text{Min. Retrigger} = \frac{\text{# of CGL entries}}{\text{A/D sample clock frequency}} + 2 \mu s
\]

\[
\text{Max. Retrigger} = \frac{1}{\text{Min. Retrigger Period}}
\]

For example, if you are using 16 channels in the channel list, and using an A/D sample clock with a frequency of 50 kHz, set the maximum retrigger frequency to 3.106 kHz, since

\[
3.106 \text{ kHz} = \frac{1}{\frac{16}{50 \text{ kHz}}} + 2 \mu s
\]

To select software-retriggered scan mode, use software to specify the following parameters:

- The dataflow as Continuous
- Triggered scan mode usage as enabled
- The retrigger source as Software
- The number of times to scan per trigger or retrigger (also called the multiscan count) as 1
- The retrigger frequency
- The initial trigger source; refer to page 100 for more information on the supported trigger sources

Table 8: Maximum Retrigger Frequency

<table>
<thead>
<tr>
<th>Function Module Series</th>
<th>Module Name</th>
<th>Maximum Retrigger Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard</td>
<td>DT9801, DT9802, DT9803, DT9804</td>
<td>100 kHz</td>
</tr>
<tr>
<td></td>
<td>DT9805, DT9806</td>
<td>50 kHz</td>
</tr>
<tr>
<td>DT9800-EC</td>
<td>DT9801-EC, DT9802-EC, DT9803-EC, DT9804-EC</td>
<td>100 kHz</td>
</tr>
<tr>
<td>DT9800-EC-I</td>
<td>DT9801-EC-I, DT9802-EC-I, DT9803-EC-I, DT9804-EC-I</td>
<td>100 kHz</td>
</tr>
</tbody>
</table>

a. The maximum retrigger frequency is 50 kHz for a single channel or a channel scan when the gain is 1 or 10, 10 kHz for a channel scan when the gain is 100, and 2 kHz for a channel scan when the gain is 500.
Externally-Retriggered Scan Mode

Use externally-retriggered scan mode if you want to accurately control the period between conversions of individual channels and retrigger the scan based on an external event.

When a DT9800 Series module detects an initial trigger (either a software trigger or an external trigger), the module scans the channel list once, then waits for an external retrigger to occur. The external retrigger occurs when a rising edge is detected on the Ext A/D Trigger input screw terminal (TB24) on the module.

When the retrigger occurs, the module scans the channel list once, then waits for another external retrigger to occur. The process repeats continuously until either the allocated buffers are filled or until you stop the operation; refer to page 107 for more information on buffers.

The conversion rate of each channel is determined by the frequency of the A/D sample clock; refer to page 98 for more information on the A/D sample clock. The conversion rate of each scan is determined by the period between external retriggers; therefore, it cannot be accurately controlled. The module ignores external triggers that occur while it is acquiring data. Only external retrigger events that occur when the module is waiting for a retrigger are detected and acted on.

To select externally-retriggered scan mode, use software to specify the following parameters:

- The dataflow as Continuous
- The triggered scan mode usage as enabled
- The retrigger source as an external, positive digital (TTL) trigger
- The number of times to scan per trigger or retrigger (also called the multiscan count) to 1
- The initial trigger source; refer to page 100 for more information on the supported trigger sources

Data Format

Table 9 lists the data encoding used by each DT9800 Series module.

<table>
<thead>
<tr>
<th>Function Module Series</th>
<th>Module Name</th>
<th>Data Encoding</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard Series</td>
<td>DT9801</td>
<td>Straight Binary</td>
</tr>
<tr>
<td></td>
<td>DT9802</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9803</td>
<td>Offset Binary</td>
</tr>
<tr>
<td></td>
<td>DT9804</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9805</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9806</td>
<td></td>
</tr>
<tr>
<td>DT9800-EC</td>
<td>DT9801-EC</td>
<td>Straight Binary</td>
</tr>
<tr>
<td></td>
<td>DT9802-EC</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DT9803-EC</td>
<td>Offset Binary</td>
</tr>
<tr>
<td></td>
<td>DT9804-EC</td>
<td></td>
</tr>
</tbody>
</table>
In software, the analog input value is returned as a code. To convert the code to voltage, use the following formulas:

\[
\text{LSB} = \frac{\text{FSR}}{2^N}
\]

\[
\text{Vin} = \text{Code} \times \text{LSB} + \text{Offset}
\]

where,

- \(\text{LSB} \) is the least significant bit.
- \(\text{FSR} \) is the full-scale range. For the DT9800 Series, the full-scale range is 10 for the unipolar range or 20 for the bipolar range.
- \(N \) is the input resolution. Refer to Table 5 on page 93 for the list of input resolutions supported.
- \(\text{Vin} \) is the analog voltage.
- \(\text{Code} \) is the raw count used by the software to represent the voltage.
- \(\text{Offset} \) is the actual minus full-scale value. The minus full-scale value is 0.0 V for the unipolar input range and −10 V for the bipolar input range.

For example, assume that you are using a DT9801 with a unipolar input range. If the software returns a code of 2010 for the analog input operation, determine the analog input voltage as follows:

\[
\text{LSB} = \frac{10}{4096} = 0.002441 \text{ V} + 0.0 \text{ V}
\]

\[
\text{Vin} = 2010 \times 0.002441 + 0 \text{ V}
\]

\[
\text{Vin} = 4.906 \text{ V}
\]
Similarly, assume that you are using a DT9804 module with a bipolar input range. The actual minus full-scale value is $-10.0 \, \text{V}$. If the software returns a code of 2010 for the analog input operation, determine the analog input voltage as follows:

\[
\text{LSB} = \frac{20}{65536} = 0.000305 \, \text{V}
\]

\[
\text{Vin} = 2010 \times 0.000305 + (-10.0 \, \text{V})
\]

\[
\text{Vin} = -9.370 \, \text{V}
\]

Table 10 lists the values that are returned when the DT9800 Series module is overrange.

Table 10: Overrange Signal Values

<table>
<thead>
<tr>
<th>Function Module Series</th>
<th>Module Name</th>
<th>Above-Range Signals</th>
<th>Below-Range Signals</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard Series</td>
<td>DT9801 DT9802</td>
<td>FFFh (plus full-scale)</td>
<td>000h (minus full-scale)</td>
</tr>
<tr>
<td></td>
<td>DT9803 DT9804 DT9805 DT9806</td>
<td>FFFFh (plus full-scale)</td>
<td>0000h (minus full-scale)</td>
</tr>
<tr>
<td>DT9800-EC Series</td>
<td>DT9801-EC DT9802-EC</td>
<td>FFFh (plus full-scale)</td>
<td>000h (minus full-scale)</td>
</tr>
<tr>
<td></td>
<td>DT9803-EC DT9804-EC</td>
<td>FFFFh (plus full-scale)</td>
<td>0000h (minus full-scale)</td>
</tr>
<tr>
<td>DT9800-EC-I Series</td>
<td>DT9801-EC-I DT9802-EC-I</td>
<td>FFFh (plus full-scale)</td>
<td>000h (minus full-scale)</td>
</tr>
<tr>
<td></td>
<td>DT9803-EC-I DT9804-EC-I</td>
<td>FFFFh (plus full-scale)</td>
<td>0000h (minus full-scale)</td>
</tr>
</tbody>
</table>
Data Transfer

The module packs two bytes into each transfer to the host computer. Even samples (corresponding to entries 0, 2, 4, and so on, in the channel list) are packed into the low bytes; odd samples (corresponding to entries 1, 3, 5, and so on, in the channel list) are packed into the high bytes.

DT9800 Series modules contain a 2048-sample FIFO. During a continuous analog input operation, the hardware interrupts the firmware on the module when the FIFO is half full. The module then transfers 2048 samples to a circular buffer, which is dedicated to the hardware, in the host computer.

The DT9800 Series Device Driver accesses the hardware circular buffer to fill user buffers that you allocate in software. It is recommended that you allocate a minimum of two user buffers for a continuous analog input operation. Data is written to multiple allocated input buffers continuously; when no more empty buffers are available, the operation stops. The data is gap-free.

Note: If you are using a slow clock data rate, such as .75 Hz, and a 256 sample user buffer, you will have to wait over 5 minutes for any data since data is transferred only when 256 samples have been read.

Error Conditions

The DT9800 Series modules can report an error if one of the following conditions occurs:

- **A/D Over Sample error** – The A/D sample clock rate is too fast. This error is reported if a new A/D sample clock pulse occurs while the ADC is busy performing a conversion from the previous A/D sample clock pulse. The host computer can clear this error.

 To avoid this error, use a slower sampling rate.

- **A/D FIFO Full Flag set to 1** – The data was not read fast enough by the host computer. The host computer can clear this error. If you encounter this error, try allocating more buffers or larger buffers.

If one of these error conditions occurs, the module reports the error but continues to acquire and transfer data to the host computer. The LED on the front panel will not blink green if the hardware detects an error.
Analog Output Features

An analog output (D/A) subsystem is provided on the following DT9800 Series modules only: DT9802, DT9802-EC, DT9802-EC-I, DT9804, DT9804-EC, DT9804-EC-I, and DT9806. This section describes the following features of the D/A subsystem:

- Output resolution, described below
- Analog output channels, described on page 108
- Output ranges and gains, described on page 109
- Conversion modes, described on page 109
- Data format, described on page 110

Output Resolution

Table 11 lists the output resolution of the DT9800 Series modules. Note that the resolution is fixed; it cannot be programmed in software.

<table>
<thead>
<tr>
<th>Function Module Series</th>
<th>Module Name</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard Series</td>
<td>DT9802</td>
<td>12 bit</td>
</tr>
<tr>
<td></td>
<td>DT9804</td>
<td>16 bit</td>
</tr>
<tr>
<td></td>
<td>DT9806</td>
<td></td>
</tr>
<tr>
<td>DT9800-EC Series</td>
<td>DT9802-EC</td>
<td>12 bit</td>
</tr>
<tr>
<td></td>
<td>DT9804-EC</td>
<td>16 bit</td>
</tr>
<tr>
<td>DT9800-EC-I Series</td>
<td>DT9802-EC-I</td>
<td>12 bit</td>
</tr>
<tr>
<td></td>
<td>DT9804-EC-I</td>
<td>16 bit</td>
</tr>
</tbody>
</table>

Analog Output Channels

The DT9802, DT9802-EC, DT9802-EC-I, DT9804, DT9804-EC, DT9804-EC-I, and DT9806 modules support two DC-level analog output channels (DAC0 and DAC1). Refer to Chapter 4 for information on how to wire analog output signals to the module. You configure the channel type through software.

Within each DAC, the digital data is double-buffered to prevent spurious outputs, then output as an analog signal. Both DACs power up to a value of 0 V ±10 mV. Resetting the module does not clear the values in the DACs.

The DT9800 Series modules can output data from a single analog output channel only. Specify the channel for a single-value analog output operation using software; refer to “Conversion Modes,” on page 109 for more information on single-value operations.
Output Ranges and Gains

Table 12 lists the output range for each DT9800 Series module.

Table 12: Output Range

<table>
<thead>
<tr>
<th>Function Module Series</th>
<th>Module Name</th>
<th>Unipolar Output Range</th>
<th>Bipolar Input Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard Series</td>
<td>DT9802</td>
<td>0 to 10 V or 0 to 5 V</td>
<td>±10 V or ±5 V</td>
</tr>
<tr>
<td></td>
<td>DT9804</td>
<td>N/A</td>
<td>±10 V</td>
</tr>
<tr>
<td></td>
<td>DT9806</td>
<td>N/A</td>
<td>±10 V</td>
</tr>
<tr>
<td>DT9800-EC Series</td>
<td>DT9802-EC</td>
<td>0 to 10 V or 0 to 5 V</td>
<td>±10 V or ±5 V</td>
</tr>
<tr>
<td>DT9804-EC</td>
<td>N/A</td>
<td>±10 V</td>
<td></td>
</tr>
<tr>
<td>DT9800-EC-I Series</td>
<td>DT9802-EC-I</td>
<td>0 to 10 V or 0 to 5 V</td>
<td>±10 V or ±5 V</td>
</tr>
<tr>
<td></td>
<td>DT9804-EC-I</td>
<td>N/A</td>
<td>±10 V</td>
</tr>
</tbody>
</table>

Specify the range using software; set the gain to 1.

Conversion Modes

DT9802, DT9802-EC, DT9802-EC-I, DT9804, DT9804-EC, DT9804-EC-I, and DT9806 modules can perform single-value analog output operations only. Use software to specify the range, gain, and analog output channel, then output the data from the specified channel. You cannot specify a clock source, trigger source, or buffer.

Note: You cannot perform a single-value analog output operation while the A/D subsystem is running.

The settling time for each DAC is 50 μs (20 V steps).

Single-value operations stop automatically when finished; you cannot stop a single-value operation.
Data Format

Data from the host computer must use offset binary data encoding for analog output signals. Using software, specify the data encoding as binary.

In software, you need to supply a code that corresponds to the analog output value you want the module to output. To convert a voltage to a code, use the following formulas:

\[
\text{LSB} = \frac{\text{FSR}}{2^N}
\]

\[
\text{Code} = \frac{\text{Vout} - \text{offset}}{\text{LSB}}
\]

where,
- \(\text{LSB}\) is the least significant bit.
- \(\text{FSR}\) is the full-scale range (10).
- \(N\) is the output resolution; see Table 11 on page 108 for a list of output resolutions.
- \(\text{Code}\) is the raw count used by the software to represent the voltage.
- \(\text{Vout}\) is the analog voltage.
- \(\text{Offset}\) is the minus full-scale value, or \(-10\) V.

For example, assume that you are using a DT9804 module. If you want to output a voltage of 4.7 V, determine the code value as follows:

\[
\text{LSB} = \frac{10 \text{ V}}{65536} = 0.0001526 \text{ V}
\]

\[
\text{Code} = \frac{4.7 \text{ V} - (-10 \text{ V})}{0.0001526 \text{ V}}
\]

\[
\text{Code} = 96330 = 1784\text{Ah}
\]
Digital I/O Features

This section describes the following features of the digital I/O subsystem:

- Digital I/O lines, described below
- Resolution, described below
- Operation modes, described on page 112

Digital I/O Lines

DT9800 Series modules support eight digital input lines (Port A, lines 0 to 7) through the DIN subsystem and eight digital output lines (Port B, lines 0 to 7) through the DOUT subsystem.

For fast, clocked digital input operations, you can enter the digital input lines from Port A as channel 16 in the analog input channel list; refer to page 95 for more information.

Note: If you are using the DataAcq SDK, the DT9800 Series modules also provide a dynamic digital output line that you can update when an analog input channel is read. Note that the dynamic digital output line is in addition to the digital output lines in Port B. This feature is not supported in the DT-Open Layers for .NET Class Library. Refer to page 95 for more information on dynamic digital output operations.

All the outputs include diode protection to the isolated ground and the isolated +5 V.

You can use the external +5 V to power the output latch enable, if desired. The state of the digital outputs is determined as follows:

- **External +5 V power is supplied** – The digital outputs maintain their previous state when the application that accesses the digital output subsystem is opened or closed, if the USB cable is disconnected, or if the computer is powered down. If the computer is rebooted and the USB power is not interrupted, the digital outputs maintain their previous state. If the USB cable is unplugged and plugged back in or if the computer is rebooted when USB power is interrupted, the digital output values are reset to 0 V.

- **External +5 V power is not supplied** – If USB power is not interrupted, and the application that accesses the digital output subsystem is opened, the digital outputs are restored to their previous state. The digital outputs go low when the application that accesses the digital output subsystem is closed. If USB power is lost, the digital outputs go low, and when USB power is restored and the application that accesses the digital output subsystem is opened, the digital outputs stay low.

Resolution

The resolution of the digital input port is fixed at 8 bits; the resolution of the digital output port is also fixed at 8 bits.

You cannot program the digital I/O resolution in software.
Operation Modes

The DT9800 Series modules support the following digital I/O operation modes:

- **Single-value operations** are the simplest to use but offer the least flexibility and efficiency. You use software to specify the digital I/O port and a gain of 1 (the gain is ignored). Data is then read from or written to the digital I/O lines. For a single-value operation, you cannot specify a clock or trigger source.

 Single-value operations stop automatically when finished; you cannot stop a single-value operation.

 Note: On DT9800 Series modules, you cannot perform a single-value digital input operation when an analog input scan is in progress due to the opto-isolators on the module. To perform a single-value digital input operation, ensure that the analog input subsystem is not running.

- **Continuous digital input** takes full advantage of the capabilities of the DT9800 Series modules. In this mode, enter all eight digital input lines of Port A as channel 16 of the analog input channel list; program this mode through the A/D subsystem. Using this mode, you can specify a clock source, scan mode, trigger source, and buffer for the digital input operation. Refer to page 95 for more information on specifying digital input lines for a continuous digital input operation.

 Note: For DT9800 Series modules, the value of digital input bits 0 to 7 is returned in the upper eight bits (8-15) of the sample for channel 16 in the channel list.

- **Dynamic digital output** (supported only in the DataAcq SDK) is useful for synchronizing and controlling external equipment and allows you to output data to the dynamic digital output line each time an analog input value is acquired. This mode is programmed through the A/D subsystem; refer to page 95 for more information.
Counter/Timer Features

The counter/timer circuitry on the module provides the clocking circuitry used by the A/D and D/A subsystems as well as several user counter/timer features. This section describes the following user counter/timer features:

- Units, described below
- C/T clock sources, described on page 113
- Gate types, described on page 115
- Pulse types and duty cycles, described on page 116
- Counter/timer operation modes, described on page 117

Units

Two 16-bit counter/timers are supported by all DT9800 Series modules. The counters are numbered 0 and 1.

Each counter accepts a clock input signal and gate input signal and outputs a clock output signal (also called a pulse output signal), as shown in Figure 53.

![Figure 53: Counter/Timer Channel](image)

Each counter corresponds to a counter/timer (C/T) subsystem. To specify the counter to use in software, specify the appropriate C/T subsystem. Counter 0 corresponds to C/T subsystem element 0; counter 1 corresponds to C/T subsystem element 1.

C/T Clock Sources

The following clock sources are available for the user counters:

- Internal C/T clock
- External C/T clock
- Internally cascaded clock

Refer to the following subsections for more information on these clock sources.
Internal C/T Clock

The internal C/T clock uses a 12 MHz time base. Counter/timer operations start on the rising edge of the clock input signal.

Through software, specify the clock source as internal and the frequency at which to pace the counter/timer operation (this is the frequency of the clock output signal). The maximum frequency that you can specify for the clock output signal is 750 kHz. The minimum frequency that you can specify for the clock output signal for each 16-bit counter is 183.1 Hz. The rising edge of the clock is the active edge.

External C/T Clock

An external C/T clock is useful when you want to pace counter/timer operations at rates not available with the internal C/T clock or if you want to pace at uneven intervals. The rising edge of the external C/T clock input signal is the active edge.

Using software, specify the clock source as external and the clock divider used to determine the frequency at which to pace the operation. The minimum clock divider that you can specify is 2.0; the maximum clock divider that you can specify is 65,536. For example, if you supply an external C/T clock with a frequency of 700 kHz and specify a clock divider of 2, the resulting frequency of the external C/T clock output signal is 350 kHz. The resulting frequency of the external C/T clock output signal must not exceed 750 kHz.

Table 13 on page 114 lists the screw terminals of the DT9800 Series modules that correspond to the external C/T clock signals of each counter/timer.

Table 13: External C/T Clock Signals

<table>
<thead>
<tr>
<th>Module</th>
<th>Counter /Timer</th>
<th>Screw Terminal on Module</th>
<th>J1 Pin Number</th>
<th>Screw Terminal on AC1324 Panel</th>
<th>J5 Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard Series</td>
<td>0</td>
<td>TB54</td>
<td>54</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>TB50</td>
<td>50</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DT9800-EC Series; DT9800-EC-I Series</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>TB20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>TB16</td>
<td>16</td>
</tr>
</tbody>
</table>

Internally Cascaded Clock

You can also internally route the clock output signal from counter/timer 0 to the clock input signal of counter/timer 1 to internally cascade the counters. In this way, you can create a 32-bit counter without externally connecting two counters together.

Specify internal cascade mode in software. The rising edge of the clock input signal is active.
Through software, specify the clock source as internal and the frequency at which to pace the counter/timer operation (this is the frequency of the clock output signal). The maximum frequency that you can specify for the clock output signal is 750 kHz. For a 32-bit cascaded counter, the minimum frequency that you can specify for the clock output signal is 0.0028 Hz.

Gate Types

The active edge or level of the gate input to the counter enables counter/timer operations. The operation starts when the clock input signal is received. Specify the gate type in software.

DT9800 Series modules provide the following gate input types:

- **None** – A software command enables any specified counter/timer operation immediately after execution. This gate type is useful for all counter/timer modes; refer to page 117 for more information on these modes.

- **Logic-low level external gate input** – Enables a counter/timer operation when the external gate signal is low, and disables the counter/timer operation when the external gate signal is high. Note that this gate type is used only for event counting, frequency measurement, and rate generation; refer to page 117 for more information on these modes.

- **Logic-high level external gate input** – Enables a counter/timer operation when the external gate signal is high, and disables a counter/timer operation when the external gate signal is low. Note that this gate type is used only for event counting, frequency measurement, and rate generation; refer to page 117 for more information on these modes.

- **Falling-edge external gate input** – Enables a counter/timer operation on the transition from the high level to the low level (falling edge). In software, this is called a low-edge gate type. Note that this gate type is used only for one-shot and repetitive one-shot mode; refer to page 117 for more information on these modes.

- **Rising-edge external gate input** – Enables a counter/timer operation on the transition from the low level to the high level (rising edge). In software, this is called a high-edge gate type. Note that this gate type is used only for one-shot and repetitive one-shot mode; refer to page 121 for more information on these modes.

Table 14 lists the screw terminals and pin numbers on the DT9800 Series modules that correspond to the gate input signals of each counter/timer.

Table 14: Gate Input Signals

<table>
<thead>
<tr>
<th>Module</th>
<th>Counter/Timer</th>
<th>Screw Terminal on Module</th>
<th>J1 Pin</th>
<th>Screw Terminal on AC1324 Panel</th>
<th>J5 Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard Series</td>
<td>0</td>
<td>TB52</td>
<td>52</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>TB48</td>
<td>48</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>DT9800-EC Series;</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>TB18</td>
<td>18</td>
</tr>
<tr>
<td>DT9800-EC-I Series</td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>TB14</td>
<td>14</td>
</tr>
</tbody>
</table>
Pulse Output Types and Duty Cycles

DT9800 Series modules can output pulses from each counter/timer. Table 15 lists the screw terminals of the modules that correspond to the pulse output signals of each counter/timer.

Table 15: Pulse Output Signals

<table>
<thead>
<tr>
<th>Module</th>
<th>Counter/Timer</th>
<th>Screw Terminal on Module</th>
<th>J1 Pin</th>
<th>Screw Terminal on AC1324 Panel</th>
<th>J5 Pin</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT9800 Standard Series</td>
<td>0</td>
<td>TB53</td>
<td>53</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>TB49</td>
<td>49</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>DT9800-EC Series; DT9800-EC-I Series</td>
<td>0</td>
<td>–</td>
<td>–</td>
<td>TB19</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>–</td>
<td>–</td>
<td>TB15</td>
<td>15</td>
</tr>
</tbody>
</table>

DT9800 Series modules support the following pulse output types on the clock output signal:

- **High-to-low transitions** – The low portion of the total pulse output period is the active portion of the counter/timer clock output signal.

- **Low-to-high transitions** – The high portion of the total pulse output period is the active portion of the counter/timer pulse output signal.

You specify the pulse output type in software.

The duty cycle (or pulse width) indicates the percentage of the total pulse output period that is active. A duty cycle of 50, then, indicates that half of the total pulse is low and half of the total pulse output is high. You specify the duty cycle in software.

Note: The minimum pulse width must be 650 ns.

Figure 54 illustrates a low-to-high pulse with a duty cycle of approximately 30%.
Counter/Timer Operation Modes

DT9800 Series modules support the following counter/timer operation modes:

- Event counting
- Frequency measurement
- Rate generation
- One-shot
- Repetitive one-shot

The following subsections describe these modes in more detail.

Event Counting

Use event counting mode to count events (clock pulses) from the counter’s associated clock input source.

If you are using one counter, you can count a maximum of 65,536 events before the counter rolls over to 0 and starts counting again. If you are using a cascaded 32-bit counter, you can count a maximum of 4,294,967,296 events before the counter rolls over to 0 and starts counting again.

In event counting mode, use an external C/T clock source; refer to page 114 for more information on the external C/T clock source.

Using software, specify the counter/timer mode as event counting (count), the C/T clock source as external, and the gate type that enables the operation as logic high. Refer to page 116 for information on gates.

Ensure that the signals are wired appropriately. Refer to Chapter 4 for wiring examples. Figure 55 shows an example of an event counting operation using a logic-high gate type.

Figure 55: Example of Event Counting
Frequency Measurement

Use frequency measurement mode to measure the frequency of the signal from counter’s associated clock input source over a specified duration. In this mode, use an external C/T clock source; refer to page 113 for more information on the external C/T clock source.

One way to perform a frequency measurement is to use the same wiring as an event counting application that does not use an external gate signal. Refer to Chapter 4 for wiring examples.

In this configuration, use software to specify the counter/timer mode as frequency measurement or event counting (count), and the duration of the system timer over which to measure the frequency. (The system timer uses a resolution of 1 ms.) In this configuration, frequency is determined using the following equation:

$$\text{Frequency Measurement} = \frac{\text{Number of Events}}{\text{Duration of the System Timer}}$$

If you need more accuracy than the system timer provides, you can connect a pulse of a known duration (such as a one-shot output of another user counter) to the external gate input. Refer to Chapter 4 for wiring examples.

In this configuration, use software to set up the counter/timers as follows:

1. Set up one of the counter/timers for one-shot mode, specifying the clock source, clock frequency, gate type, and type of output pulse (high or low).
2. Set up the counter/timer that will measure the frequency for event counting mode, specifying the clock source to count, and the gate type (this should match the pulse output type of the counter/timer set up for one-shot mode).
3. Start both counters (events are not counted until the active period of the one-shot pulse is generated).
4. Read the number of events counted. (Allow enough time to ensure that the active period of the one-shot occurred and that events have been counted.)
5. Determine the measurement period using the following equation:

$$\text{Measurement period} = \frac{1}{\text{Clock Frequency}} \times \text{Active Pulse Width}$$

6. Determine the frequency of the clock input signal using the following equation:

$$\text{Frequency Measurement} = \frac{\text{Number of Events}}{\text{Measurement Period}}$$

Figure 56 shows an example of a frequency measurement operation. In this example, three events are counted during a duration of 300 ms. The frequency, then, is 10 Hz, since 10 Hz = $\frac{3}{.3 \text{ s}}$.

Rate Generation

Use rate generation mode to generate a continuous pulse output signal from the counter; this mode is sometimes referred to as continuous pulse output or pulse train output. You can use this pulse output signal as an external clock to pace other operations, such as analog input or other counter/timer operations.

While the pulse output operation is enabled, the counter outputs a pulse of the specified type and frequency continuously. As soon as the operation is disabled, rate generation stops.

The period of the output pulse is determined by the clock input signal and the external clock divider. If you are using one counter (not cascaded), you can output pulses using a maximum frequency of 1 MHz (this is the frequency of the clock output signal). In rate generation mode, either the internal or external C/T clock input source is appropriate depending on your application; refer to page 113 for more information on the C/T clock source.

Using software, specify the counter/timer mode as rate generation (rate), the C/T clock source as either internal or external, the polarity of the output pulses (high-to-low transitions or low-to-high transitions), the duty cycle of the output pulses, and the gate type that enables the operation as logic-high. Refer to page 116 for more information on pulse output signals and to page 115 for more information on gate types.

Ensure that the signals are wired appropriately. Refer to Chapter 4 for wiring examples.

Figure 57 shows an example of an enabled rate generation operation using a logic-high gate input signal, an external C/T clock source with an input frequency of 4 kHz, a clock divider of 4, a low-to-high pulse type, and a duty cycle of 75%. A 1 kHz square wave is the generated output. **Figure 58** shows the same example using a duty cycle of 25%.
One-Shot

Use one-shot mode to generate a single pulse output signal from the counter when the operation is triggered (determined by the gate input signal). You can use this pulse output signal as an external digital (TTL) trigger to start other operations, such as analog input operations.

When the one-shot operation is triggered, a single pulse is output; then, the one-shot operation stops. All subsequent clock input signals and gate input signals are ignored.
The period of the output pulse is determined by the clock input signal. In one-shot mode, the internal C/T clock source is more useful than an external C/T clock source; refer to page 113 for more information on the internal C/T clock source.

Using software, specify the counter/timer mode as one-shot, the clock source as internal, the polarity of the output pulse (high-to-low transition or low-to-high transition), and the gate type to trigger the operation as rising edge or falling edge. Refer to page 116 for more information on pulse output types and to page 115 for more information on gate types.

Note: In the case of a one-shot operation, the pulse width is set to 100% automatically.

Ensure that the signals are wired appropriately. Refer to Chapter 4 for wiring examples.

Figure 59 shows an example of a one-shot operation using an external gate input (rising edge), a clock output frequency of 1 kHz (pulse period of 1 ms), and a low-to-high pulse type.

Repetitive One-Shot

Use repetitive one-shot mode to generate a pulse output signal each time the module detects a trigger (determined by the gate input signal). You can use this mode to clean up a poor clock input signal by changing its pulse width, and then outputting it.

In repetitive one-shot mode, the internal C/T clock source is more useful than an external C/T clock source; refer to page 113 for more information on the internal C/T clock source.
Use software to specify the counter/timer mode as repetitive one-shot, the polarity of the output pulses (high-to-low transitions or low-to-high transitions), the C/T clock source, and the gate type to trigger the operation as rising edge or falling edge. Refer to page 116 for more information on pulse output types and to page 115 for more information on gates.

Note: In the case of a repetitive one-shot operation, the pulse width is set to 100% automatically.

When the one-shot operation is triggered (determined by the gate input signal), a pulse is output. When the module detects the next trigger, another pulse is output. This operation continues until you stop the operation.

Note: Triggers that occur while the pulse is being output are not detected by the module.

Ensure that the signals are wired appropriately. Refer to Chapter 4 for wiring examples.

Figure 60 shows an example of a repetitive one-shot operation using an external gate (rising edge); a clock output frequency of 1 kHz (one pulse every 1 ms), and a low-to-high pulse type.
Supported Device Driver Capabilities

- Data Flow and Operation Options ... 125
- Buffering .. 126
- Triggered Scan Mode .. 126
- Data Encoding .. 126
- Channels .. 127
- Gain .. 127
- Ranges ... 128
- Resolution ... 128
- Current and Resistance Support .. 129
- Thermocouple, RTD, and Thermistor Support .. 130
- IEPE Support .. 131
- Bridge and Strain Gage Support .. 131
- Start Triggers .. 132
- Reference Triggers .. 132
- Clocks .. 133
- Counter/Timers ... 134
- Tachometers ... 135
The DT9800 Series Device Driver provides support for the analog input (A/D), analog output (D/A), digital input (DIN), digital output (DOUT), and counter/timer (C/T) subsystems. For information on how to configure the device driver, refer to Chapter 3.

Table 16: DT9800 Series Subsystems

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUt</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Subsystems on Module</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

a. D/A subsystems are supported by the DT9802, DT9802-EC, DT9802-EC-I, DT9804, DT9804-EC, DT9804-EC-I, and DT9806 modules only.

The tables in this chapter summarize the features available for use with the DT-Open Layers for .NET Class Library and the DT9800 Series modules. The DT-Open Layers for .NET Class Library provides properties that return support information for specified subsystem capabilities.

The first row in each table lists the subsystem types. The first column in each table lists all possible subsystem capabilities. A description of each capability is followed by the property used to describe that capability in the DT-Open Layers for .NET Class Library.

Note: The following tables include the capabilities that can be queried. However, some capabilities may not be supported by your device. Blank fields represent unsupported options.

For more information, refer to the description of these properties in the DT-Open Layers for .NET Class Library online help or DT-Open Layers for .NET Class Library User’s Manual.
Data Flow and Operation Options

Table 17: Data Flow and Operation Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single-Value Operation Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Simultaneous Single-Value Output Operations</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Continuous Operation Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Continuous Operation until Trigger</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Continuous Operation before & after Trigger</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Waveform Operations Using FIFO Only</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Simultaneous Start List Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Supports Programmable Synchronization Modes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Synchronization Modes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Interrupt Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>FIFO Size, in samples</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Muting and Unmuting the Output Voltage</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Auto-Calibrate Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

a. You cannot perform a single-value digital input operation when an analog input scan is in progress due to the opto-isolators on the module. To perform a single-value digital input operation, ensure that the analog input subsystem is not running.

b. While the DIN subsystem itself is incapable of continuous operation, you can perform a continuous DIN operation by specifying channel 16 in the channel-gain list of the A/D subsystem and starting the A/D subsystem. All eight bits of the digital input lines from Port A are assigned to A/D input channel 16. The value of digital input bits 0 to 7 is returned in the upper eight bits (8-15) of the sample for channel 16.
Buffering

Table 18: DT9800 Series Buffering Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buffer Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsBuffering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Single Buffer Wrap Mode Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsWrapSingle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inprocess Buffer Flush Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsInProcessFlush</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Triggered Scan Mode

Table 19: DT9800 Series Triggered Scan Mode Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triggered Scan Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsTriggeredScan</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Number of CGL Scans per Trigger</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>MaxMultiScanCount</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Retrigger Frequency</td>
<td>100 kHz, 50 kHz</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MaxRetriggerFreq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Retrigger Frequency</td>
<td>0.75 Hz</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MinRetriggerFreq</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The maximum retrigger frequency for all modules except the DT9805 and DT9806 is 100 kHz. The DT9805 and DT9806 modules support a maximum retrigger frequency of 50 kHz. The appropriate retrigger frequency to use depends on the number of samples in the channel-gain list and the A/D sample clock frequency, as follows:

\[
\text{Min. Retrigger} = \frac{\text{# of CGL entries}}{\text{A/D sample clock frequency}} + 2 \mu s
\]

\[
\text{Max. Retrigger} = \frac{1}{\text{Min. Retrigger Period}}
\]

b. The value of 0.75 Hz assumes the minimum number of samples is 1.

Data Encoding

Table 20: DT9800 Series Data Encoding Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binary Encoding Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsBinaryEncoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Twos Complement Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsTwoCompEncoding</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Returns Floating-Point Values</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ReturnsFloats</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Channels

Table 21: DT9800 Series Channel Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Channels</td>
<td>9 or 17<sup>a</sup></td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>SE Support</td>
<td>SupportsSingleEnded</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SE Channels</td>
<td>MaxSingleEndedChannels</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>DI Support</td>
<td>SupportsDifferential</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>DI Channels</td>
<td>MaxDifferentialChannels</td>
<td>8</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Maximum Channel-Gain List Depth</td>
<td>CGLDepth</td>
<td>32</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Notes
- Channels 0 to 15 are provided for single-ended or pseudo-differential analog inputs; channels 0 to 7 are provided for differential inputs. Channel 16 reads all eight bits from the DIN subsystem (Port A). The value of digital input bits 0 to 7 is returned in the upper eight bits (8-15) of the sample for channel 16.

Gain

Table 22: Gain Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programmable Gain Support</td>
<td>SupportsProgrammableGain</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Gains</td>
<td>NumberOfSupportedGains</td>
<td>4<sup>a</sup></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Gains Available</td>
<td>SupportedGains</td>
<td>1, 2, 4, 8 or 1, 10, 100, 500<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes
- The DT9805 and DT9806 modules support gains of 1, 10, 100, and 500; all other DT9800 Series modules support gains of 1, 2, 4, and 8.

^a Indicates additional support features specific to certain modules.
Ranges

Table 23: Range Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Voltage Ranges</td>
<td>NumberOfRanges</td>
<td>2(^a)</td>
<td>4(^b)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Available Ranges</td>
<td>SupportedVoltageRanges</td>
<td>0 to 10 V, ±10 V(^a)</td>
<td>0 to 10 V, 0 to 5 V, ±5 V, ±10 V(^b)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(a\). DT9801, DT9801-EC, DT9801-EC-I, DT9802, DT9802-EC, and DT9802-EC-I modules support input ranges of 0 to 10 V or ±10 V. DT9803, DT9803-EC, DT9803-EC-I, DT9804, DT9804-EC, DT9804-EC-I, DT9805, and DT9806 modules support an input range of ±10 V only.

\(b\). DT9802, DT9802-EC, and DT9802-EC-I modules support an output range of 0 to 10 V, 0 to 5 V, ±10 V, or ±5 V. DT9804, DT9804-EC, DT9804-EC-I, and DT9806 modules support an output range of ±10 V only.

Resolution

Table 24: Resolution Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Programmable Resolution</td>
<td>SupportsSoftwareResolution</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Resolutions</td>
<td>NumberOfResolutions</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Available Resolutions</td>
<td>SupportedResolutions</td>
<td>12 or 16(^a)</td>
<td>12 or 16(^b)</td>
<td>8</td>
<td>8</td>
<td>16(^c)</td>
</tr>
</tbody>
</table>

\(a\). These modules provide 12-bit resolution for the A/D subsystem: DT9801, DT9802, DT9801-EC, DT9802-EC, DT9801-EC-I, and DT9802-EC-I.

These modules provide 16-bit resolution for the A/D subsystem: DT9803, DT9804, DT9805, DT9806, DT9803-EC, DT9804-EC, DT9803-EC-I, and DT9804-EC-I.

\(b\). These modules provide 12-bit resolution for the D/A subsystem: DT9802, DT9802-EC, and DT9802-EC-I.

These modules provide 16-bit resolution for the D/A subsystem: DT9804, DT9806, DT9804-EC, and DT9804-EC-I.

\(c\). You can cascade counter/timers in software to create a 32-bit counter/timer.
Current and Resistance Support

Table 25: Current and Resistance Support Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Support</td>
<td>SupportsCurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current Output Support</td>
<td>SupportsCurrentOutput</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resistance Support</td>
<td>SupportsResistance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable External Excitation Current Source for Resistance</td>
<td>SupportsExternalExcitationCurrentSrc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable Internal Excitation Current Source</td>
<td>SupportsInternalExcitationCurrentSrc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Excitation Current Source Values</td>
<td>SupportedExcitationCurrentValues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thermocouple, RTD, and Thermistor Support

Table 26: Thermocouple, RTD, and Thermistor Support Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermocouple Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsThermocouple</td>
<td>Yes<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsRTD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermistor Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsThermistor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Converted to Temperature</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsTemperatureDataStream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported Thermocouple Types</td>
<td>ThermocoupleType</td>
<td>J, K, B, E, N, R, S, T</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports CJC Source Internally in Hardware</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsCjcSourceInternal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports CJC Channel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsCjcSourceChannel</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available CJC Channels</td>
<td>CjcChannel</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports Interleaved CJC Values in Data Stream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsInterleavedCjcTemperaturesInStream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported RTD Types</td>
<td>RTDType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RTD R0 Coefficient</td>
<td>RtdR0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supports Data Filters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsTemperatureFilters</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Filter Types</td>
<td>TemperatureFilterType</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a Thermocouple inputs are supported on the DT9805 and DT9806 modules.
IEPE Support

Table 27: IEPE Support Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEPE Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SupportsIEPE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable AC Coupling</td>
<td>SupportsACCoupling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable DC Coupling</td>
<td>SupportsDCCoupling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable External Excitation Current Source</td>
<td>SupportsExternalExcitationCurrentSrc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Software Programmable Internal Excitation Current Source</td>
<td>SupportsInternalExcitationCurrentSrc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Available Excitation Current Source Values</td>
<td>SupportedExcitationCurrentValues</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bridge and Strain Gage Support

Table 28: Bridge and Strain Gage Support Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge Support</td>
<td>SupportsBridge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported Bridge Configurations</td>
<td>BridgeConfiguration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strain Gage Support</td>
<td>SupportsStrainGage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supported Strain Gage Bridge Configurations</td>
<td>StrainGageBridgeConfiguration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Excitation Voltage</td>
<td>SupportsExternalExcitationVoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Internal Excitation Voltage</td>
<td>SupportsInternalExcitationVoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shunt Calibration</td>
<td>SupportsShuntCalibration</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage Excitation Per Channel</td>
<td>SupportedPerChannelVoltageExcitation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum Excitation Voltage</td>
<td>MinExcitationVoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Excitation Voltage</td>
<td>MaxExcitationVoltage</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Start Triggers

Table 29: Trigger Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Software Trigger Support</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>External Positive TTL Trigger Support</td>
<td>Yes^a</td>
<td></td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Negative TTL Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Positive TTL Trigger Support for Single-Value Operations</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Negative TTL Trigger Support for Single-Value Operations</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Threshold Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Threshold Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Event Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. The external trigger is the rising-edge on the External A/D Trigger input.

Reference Triggers

Table 30: Reference Trigger Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Positive TTL Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External Negative TTL Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive Threshold Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative Threshold Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Digital Event Trigger Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sync Bus Support</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold Trigger Channel</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Trigger Scan Count</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a. The external trigger is the rising-edge on the External A/D Trigger input.
Clocks

Table 31: Clock Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal Clock Support</td>
<td>SupportsInternalClock</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>External Clock Support</td>
<td>SupportsExternalClock</td>
<td>Yes</td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Simultaneous Input/Output on a Single Clock Signal</td>
<td>SupportsSimultaneousClocking</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Base Clock Frequency

| BaseClockFrequency | 12 MHz | 0 | 0 | 0 | 12 MHz | 0 |

Maximum Clock Divider

| MaxExtClockDivider | 1.0 | 1.0 | 1.0 | 1.0 | 65536 | 0 |

Minimum Clock Divider

| MinExtClockDivider | 1.0 | 1.0 | 1.0 | 1.0 | 2.0 | 0 |

Maximum Frequency

| MaxFrequency | 100 kHz^a | 0 | 0 | 750 kHz | 0 |

Minimum Frequency

| MinFrequency | 0.75 Hz | 1.0 | 0 | 0 | 0.0028 Hz^b | 0 |

^a The maximum throughput for analog input channels is 100 kHz for all modules except the DT9805 and DT9806 modules. The maximum throughput for the DT9805 and DT9806 modules is 50 kHz for a single channel or channel scan with gains of 1 and 10, 10 kHz for a channel scan with a gain of 100, and 2 kHz for a channel scan and a gain of 500.

^b Counter/timers 0 and 1 can be cascaded. If you are not using cascaded timers, this value is approximately 183 Hz.
Counter/Timers

Table 32: DT9800 Series Counter/Timer Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascading Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsCascading</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Event Count Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsCount</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Generate Rate Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsRateGenerate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One-Shot Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsOneShot</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Repetitive One-Shot Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsOneShotRepeat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Up/Down Counting Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsUpDown</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edge-to-Edge Measurement Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsMeasure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous Edge-to-Edge Measurement Mode Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsContinuousMeasure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High to Low Output Pulse Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsHighToLowPulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low to High Output Pulse Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsLowToHighPulse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Pulse Width Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsVariablePulseWidth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (internal) Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsGateNone</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Level Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsGateHighLevel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Level Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsGateLowLevel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Edge Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsGateHighEdge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Edge Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsGateLowEdge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Level Change Gate Type Support</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsGateLevel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock-Falling Edge Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsClockFalling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clock-Rising Edge Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsClockRising</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gate-Falling Edge Type</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>SupportsGateFalling</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 32: DT9800 Series Counter/Timer Options (cont.)

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gate-Rising Edge Type</td>
<td>SupportsGateRising</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interrupt-Driven Operations</td>
<td>SupportsInterrupt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. In one-shot and repetitive one-shot modes, the pulse width is set to 100% automatically.
b. High-edge and low-edge are supported for one-shot and repetitive one-shot modes. High-level and low-level are supported for event counting and rate generation modes.

Tachometers

Table 33: Tachometer Options

<table>
<thead>
<tr>
<th>DT9800 Series</th>
<th>A/D</th>
<th>D/A</th>
<th>DIN</th>
<th>DOUT</th>
<th>C/T</th>
<th>TACH</th>
<th>QUAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tachometer Falling Edges</td>
<td>SupportsFallingEdge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachometer Rising Edges</td>
<td>SupportsRisingEdge</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tachometer Stale Data Flag</td>
<td>SupportsStaleDataFlag</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Calibration

Running the Calibration Utility .. 139
Calibrating the Analog Input Subsystem ... 140
Calibrating the Thermocouple Circuitry ... 142
Calibrating the Analog Output Subsystem .. 144
The DT9800 Series modules are calibrated at the factory and should not require calibration for initial use. We recommend that you check and, if necessary, readjust the calibration of the analog I/O circuitry on the DT9800 Series modules every six months.

Note: Ensure that you installed the DT9800 Series Device Driver and configured your module (if applicable) prior to using the DT9800 Series Calibration Utility. Refer to Chapter 3 for more information.

This chapter describes how to run the DT9800 Series Calibration Utility and calibrate the analog I/O circuitry of the DT9800 Series modules.
Running the Calibration Utility

To run the DT9800 Series Calibration Utility, do the following:

1. Click **Start** from the Task Bar.

2. Browse to **Programs | Data Translation, Inc | Calibration | DT9800 Calibration Utility**. The main menu appears.

3. Select the module to calibrate, and then click **OK**.

Once the DT9800 Series Calibration Utility is running, you can calibrate the analog I/O circuitry, as described in the following sections.
Calibrating the Analog Input Subsystem

The following sections describe how to configure your module for calibration and how to calibrate the analog input circuitry of your module.

Configuring for Calibration

Do the following to configure a DT9800 Series module for calibration:

1. Connect Analog Input 0 (TB1) to the positive side of the precision voltage source.
2. Connect Analog Input 0 Return (TB2) to the negative side of the precision voltage source.
3. Connect Analog Input 0 Return (TB2) to Analog Ground (TB17).
4. Connect Analog In 1 (TB3) to Analog In 1 Return (TB4) and to Analog Ground (TB17).

When you are finished connecting the external reference, calibrate the module, as described in the next section.

Using the Auto-Calibration Procedure

Auto-calibration is the easiest to use and is the recommended calibration method. To calibrate the analog input subsystem automatically, do the following:

1. Click Go in the Auto Calibration box.

The zero and full-scale ranges are automatically calibrated.

Note: If you are not satisfied with the analog input calibration, you can load the factory default settings stored in the EEPROM by clicking Restore in the A/D Configuration Factory Settings box.

Once you have finished this procedure, the analog input circuitry is calibrated. If you are using a DT9805 or DT9806 module, we recommend that you calibrate the thermocouple circuitry using the instructions on page 142. Otherwise, you can calibrate the analog output circuitry, if you wish, following the instructions on page 144.
Using the Manual Calibration Procedure

To calibrate the analog input subsystem manually, do the following:

1. Click A/D Ch. 1.

2. Click the increment or decrement arrows in the Offset box until the A/D value on the screen reads 0 V (within 0.001 V for the DT9803, DT9803-EC, DT9803-EC-I, DT9804, DT9804-EC, DT9804-EC-I, DT9805, and DT9806 modules and within 0.010 V for the DT9801, DT9801-EC, DT9801-EC-I, DT9802, DT9802-EC, and DT9802-EC-I modules).

3. Click A/D Ch. 0.

4. Click the increment or decrement arrows in the Gain box until the A/D value on the screen reads +9.3750 V (within 0.001 V for the DT9803, DT9803-EC, DT9803-EC-I, DT9804, DT9804-EC, DT9804-EC-I, DT9805, and DT9806 modules and within 0.010 V for the DT9801, DT9801-EC, DT9801-EC-I, DT9802, DT9802-EC, and DT9802-EC-I modules).

Note: If you are not satisfied with the analog input calibration, you can load the factory default settings stored in the EEPROM by clicking Restore in the A/D Configuration Factory Settings box.

Once you have finished this procedure, the analog input circuitry is calibrated. If you are using a DT9805 or DT9806 module, we recommend that you calibrate the thermocouple circuitry using the instructions in the next section. Otherwise, you can calibrate the analog output circuitry, if you wish, following the instructions on page 144.
Calibrating the Thermocouple Circuitry

Note: Ensure that the DT9805 or DT9806 module has been running for about 1/2 hour (allowing the module to warm up) and that you have calibrated the analog input circuitry using the procedure described on page 140 before calibrating the thermocouple circuitry.

To calibrate the thermocouple circuitry on the DT9805 or DT9806 modules, do the following:

1. Disconnect all signals to Analog Input 0 (TB1), leaving it open (no connections).
2. Connect Analog In 1 (TB3) to Analog In 1 Return (TB4) and to Analog Ground (TB17).
3. In the PGL Zero box, click the text \textit{A/D Gain=500, CH 1} to refresh the value of analog input channel 1.

 \textit{The gain is set to 500 automatically.}

4. Click the increment or decrement arrows in the PGL Zero box until the A/D value reads 0 V (within 5 mV).
5. Measure the room temperature at the temperature sensor of the board (see Figure 61) by taping a thermometer to the underside of the module between screw terminals 9 and 10, then multiply this value by 10 mV.

 \textit{This is the temperature to which to adjust the CJC.}

Figure 61: Temperature Sensor Location
6. Click the text **A/D Gain=1, CH 0** in the **CJC Adj.** box to refresh the value of analog input channel 0.
The gain is set to 1 automatically.

7. Click the increment or decrement arrows in the **CJC Adj.** box until the A/D value on the screen is equal to the room temperature multiplied by 10 mV (within 5 mV). For example, if the room temperature is 25°C, you want to adjust the CJC to 250 mV (within 5 mV).

Note: If you are not satisfied with the thermocouple calibration, you can load the factory default settings stored in the EEPROM by clicking **Restore** in the Thermocouple Calibration Factory Settings box.

Once you have finished this procedure, the thermocouple circuitry is calibrated. You can now calibrate the analog output circuitry, if you wish, following the instructions in the next section.
Calibrating the Analog Output Subsystem

To calibrate the analog output circuitry of the DT9802, DT9802-EC, DT9802-EC-I, DT9804, DT9804-EC, DT9804-EC-I, or DT9806 modules, use an external precision meter.

To calibrate the analog output circuitry, do the following:

1. Connect Analog Output 0+ (TB19) to the positive side of the precision voltage meter.
2. Connect Analog Output 0 Return (TB20) to the negative side of the precision voltage meter.
3. In the DAC0 Voltage box, click 0.000 V.
4. In the DAC0 Adjustment box, click the increment or decrement arrows until your external meter display reads 0 V (within 0.005 V).
5. In the DAC0 Voltage box, click +9.375 V and verify that your external meter display reads +9.375 V (within ±12 mV).
6. Connect Analog Output 1+ (TB21) to the positive side of the precision voltage meter.
7. Connect Analog Output 1 Return (TB22) to the negative side of the precision voltage meter.
8. In the DAC1 Voltage box, click 0.000 V.
9. In the DAC1 Adjustment box, click the increment or decrement arrows until your external meter display reads 0 V (within 0.005 V).
10. In the DAC1 Voltage box, click +9.375 V and verify that your external meter display reads +9.375 V (within ±12 mV).

Note: If you are not satisfied with the analog output calibration, you can load the factory default settings stored in the EEPROM by clicking Restore in the D/A Calibration Factory Settings box.

Once you have finished this procedure, the analog output circuitry is calibrated.

To close the Calibration Utility, click Done.
Troubleshooting

General Checklist ... 146
Technical Support ... 148
If Your Module Needs Factory Service 149
General Checklist

Should you experience problems using the DT9800 Series modules, do the following:

1. Read all the documentation provided for your product, including any “Read This First” information.

2. Check the OMNI CD for any README files and ensure that you have used the latest installation and configuration information available.

3. Check that your system meets the requirements stated on page 28.

4. Check that you have installed your hardware properly using the instructions in Chapter 2.

5. Check that you have installed and configured the device driver properly using the instructions in Chapter 3.

6. Check that you have wired your signals properly using the instructions in Chapter 4.

7. Search the DT Knowledgebase in the Support section of the Data Translation web site (at www.mccdaq.com) for an answer to your problem.

8. Visit the product’s page on the Data Translation web site for the latest tips, white papers, product documentation, and software fixes.

If you still experience problems, try using the information in Table 34 to isolate and solve the problem. If you cannot identify the problem, refer to page 146.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module is not recognized</td>
<td>You plugged the module into your computer before installing the device driver.</td>
<td>From the Control Panel > System > Hardware > Device Manager, uninstall any unknown devices (showing a yellow question mark). Then, run the setup program on your OMNI CD to install the USB device drivers, and reconnect your USB module to the computer.</td>
</tr>
<tr>
<td>Module does not respond.</td>
<td>The module configuration is incorrect.</td>
<td>Check the configuration of your device driver; see the instructions in Chapter 3.</td>
</tr>
<tr>
<td></td>
<td>The module is damaged.</td>
<td>Contact Data Translation for technical support; refer to page 148.</td>
</tr>
<tr>
<td>Intermittent operation.</td>
<td>Loose connections or vibrations exist.</td>
<td>Check your wiring and tighten any loose connections or cushion vibration sources; see the instructions in Chapter 4.</td>
</tr>
<tr>
<td></td>
<td>The module is overheating.</td>
<td>Check environmental and ambient temperature; consult the module’s specifications on page 158 of this manual and the documentation provided by your computer manufacturer for more information.</td>
</tr>
<tr>
<td></td>
<td>Electrical noise exists.</td>
<td>Check your wiring and either provide better shielding or reroute unshielded wiring; see the instructions in Chapter 4.</td>
</tr>
</tbody>
</table>
Table 34: Troubleshooting Problems (cont.)

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Possible Cause</th>
<th>Possible Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device failure error reported.</td>
<td>The DT9800 Series module cannot communicate with the Microsoft bus driver or a problem with the bus driver exists.</td>
<td>Check your cabling and wiring and tighten any loose connections; see the instructions in Chapter 4.</td>
</tr>
<tr>
<td></td>
<td>The DT9800 Series module was removed while an operation was being performed.</td>
<td>Ensure that your DT9800 Series module is properly connected; see the instructions in Chapter 2.</td>
</tr>
<tr>
<td>Data appears to be invalid.</td>
<td>An open connection exists.</td>
<td>Check your wiring and fix any open connections; see the instructions in Chapter 4.</td>
</tr>
<tr>
<td></td>
<td>A transducer is not connected to the channel being read.</td>
<td>Check the transducer connections; see the instructions in Chapter 4.</td>
</tr>
<tr>
<td></td>
<td>The module is set up for differential inputs while the transducers are wired as single-ended inputs or vice versa.</td>
<td>Check your wiring and ensure that what you specify in software matches your hardware configuration; see the instructions in Chapter 4.</td>
</tr>
<tr>
<td>Computer does not boot.</td>
<td>The power supply of the computer is too small to handle all the system resources.</td>
<td>Check the power requirements of your system resources and, if needed, get a larger power supply; consult the module’s specifications on page 158 of this manual.</td>
</tr>
</tbody>
</table>
Technical Support

If you have difficulty using the DT9800 Series module, Data Translation’s Technical Support Department is available to provide technical assistance.

To request technical support, go to our website at http://www.mccdaq.com and click on the Support link.

When requesting technical support, be prepared to provide the following information:

- Your product serial number
- The hardware/software product you need help on
- The version of the OMNI CD you are using
- Your contract number, if applicable

If you are located outside the USA, contact your local distributor; see our website (www.mccdaq.com) for the name and telephone number of your nearest distributor.
If Your Module Needs Factory Service

Most hardware models can be functionally tested, evaluated for repairs (if needed), and calibrated to factory specifications. An RMA # must be obtained from Application Engineering in advance of sending any product back to Measurement Computing. Customers outside the USA must contact their local distributor for a return procedure. Calibration certificates for most analog models can be obtained for a fee (certificate must be requested at time of RMA # assignment).
Specifications

Analog Input Specifications .. 152
Analog Output Specifications ... 155
Digital I/O Specifications .. 156
Counter/Timer Specifications ... 157
Power, Physical, and Environmental Specifications 158
Cable and Terminal Block Specifications 159
Regulatory Specifications .. 160
Analog Input Specifications

Table 35 lists the specifications for the A/D subsystem.

Table 35: A/D Subsystem Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9801/-EC/-EC-I, DT9802/-EC/-EC-I Specifications</th>
<th>DT9803/-EC/-EC-I, DT9804/-EC/-EC-I, DT9805, DT9806 Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of analog inputs</td>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>Single-ended/pseudo-differential:</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Differential:</td>
<td></td>
<td>(7 thermocouple inputs, 1 CJC on DT9805/06)</td>
</tr>
<tr>
<td>Number of gains</td>
<td>4 (1, 2, 4, 8)</td>
<td>4 (1, 2, 4, and 8 for DT9803/04; 1, 10, 100, 500 for DT9805/06)</td>
</tr>
<tr>
<td>Resolution</td>
<td>12 bits</td>
<td>16 bits</td>
</tr>
<tr>
<td>Data encoding</td>
<td>Offset binary</td>
<td></td>
</tr>
<tr>
<td>Coupling</td>
<td>DC</td>
<td></td>
</tr>
<tr>
<td>Over voltage protection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Off:</td>
<td></td>
<td>±25 V</td>
</tr>
<tr>
<td>On:</td>
<td></td>
<td>±40 V</td>
</tr>
<tr>
<td>ESD protection</td>
<td></td>
<td>1.5 kV</td>
</tr>
<tr>
<td>System Error</td>
<td>0.03% FSR</td>
<td>0.01% FSR</td>
</tr>
<tr>
<td>System accuracy (full-scale)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain = 1:</td>
<td>0.03%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Gain = 2:</td>
<td>0.04%</td>
<td>0.02%</td>
</tr>
<tr>
<td>Gain = 4:</td>
<td>0.05%</td>
<td>0.03%</td>
</tr>
<tr>
<td>Gain = 8:</td>
<td>0.05%</td>
<td>0.03%</td>
</tr>
<tr>
<td>(DT9805/9806 only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain = 10:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain = 100:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gain = 500:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinearity (integral)</td>
<td>±1.0 LSBs</td>
<td>±4.0 LSBs</td>
</tr>
<tr>
<td>Differential linearity</td>
<td>±0.5 LSBs (no missing codes)</td>
<td>±1.0 LSBs (no missing codes) for DT9803/04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±1.2 LSBs (no missing codes) for DT9805/06</td>
</tr>
<tr>
<td>Range</td>
<td>0 to 1.25 V, 2.5 V, 5 V, 10 V</td>
<td>±1.25 V, 2.5 V, 5 V, 10 V for DT9803/04</td>
</tr>
<tr>
<td></td>
<td>±1.25 V, 2.5, 5, 10 V</td>
<td>±0.020 V, 0.10 V, 1 V, 10 V for DT9805/06</td>
</tr>
</tbody>
</table>
Table 35: A/D Subsystem Specifications (cont.)

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9801/-EC/-EC-I, DT9802/-EC/-EC-I Specifications</th>
<th>DT9803/-EC/-EC-I, DT9804/-EC/-EC-I, DT9805, DT9806 Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drift Zero</td>
<td>±30 μV+ (+20 μV * Gain)/°C</td>
<td>±25 μV+ (+10 μV * Gain)/°C for DT9803/04 a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±25 μV+ (+5 μV * Gain)/°C for DT9805/06</td>
</tr>
<tr>
<td>Gain</td>
<td>±30 ppm/°C</td>
<td>±20 ppm/°C</td>
</tr>
<tr>
<td>Input impedance Off:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>On:</td>
<td>100 MΩ, 10 pFb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>100 MΩ, 100 pFb</td>
<td></td>
</tr>
<tr>
<td>Channel-gain list</td>
<td>32 Samples</td>
<td></td>
</tr>
<tr>
<td>Internal reference</td>
<td>+2.5 V ±0.002 V</td>
<td></td>
</tr>
<tr>
<td>Input bias current</td>
<td>±20 nA</td>
<td>±20 nA for DT9803/04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>+250 nA for DT9805/06 (Ch1-7)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>±10 nA for DT9805/06 (Ch8-15)</td>
</tr>
<tr>
<td>Common mode voltage</td>
<td>±11 V maximum (operational)</td>
<td></td>
</tr>
<tr>
<td>Maximum input voltage</td>
<td>±40 V maximum (protection)</td>
<td></td>
</tr>
<tr>
<td>A/D converter noise</td>
<td>0.3 LSB rms</td>
<td>0.4 LSB rms</td>
</tr>
<tr>
<td>Amplifier input noise</td>
<td>20 μV rms + (10 μV rms * gain)</td>
<td>15 μV rms + (10 μV rms * gain)</td>
</tr>
<tr>
<td></td>
<td>200 pA rms (current)</td>
<td>100 pA rms (current)</td>
</tr>
<tr>
<td>Channel-to-channel offset</td>
<td>±40 μV</td>
<td>±40 μV</td>
</tr>
<tr>
<td>Channel acquisition time</td>
<td>3 μs</td>
<td>5 μs for DT9803/04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 μs (Gain = 1) for DT9805/06</td>
</tr>
<tr>
<td></td>
<td></td>
<td>250 μs (Gain = 500) for DT9805/06</td>
</tr>
<tr>
<td>A/D conversion time</td>
<td>6.6 μs</td>
<td>8 μs</td>
</tr>
<tr>
<td>Effective number of bits (ENOB) at 1 kHz input</td>
<td>11.5 bits</td>
<td>13.5 bits for DT9803/04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14.1 bits for DT9805/06</td>
</tr>
<tr>
<td>Total Harmonic Distortion</td>
<td>−80 dB typical</td>
<td>−90 dB typical</td>
</tr>
<tr>
<td>Channel crosstalk</td>
<td>−80 dB @ 1 kHz</td>
<td></td>
</tr>
<tr>
<td>Minimum Data Throughput (Internal Clock)</td>
<td></td>
<td>0.75 S/s</td>
</tr>
</tbody>
</table>
Table 35: A/D Subsystem Specifications (cont.)

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9801/-EC/-EC-I, DT9802/-EC/-EC-I Specifications</th>
<th>DT9803/-EC/-EC-I, DT9804/-EC/-EC-I, DT9805, DT9806 Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data throughput</td>
<td>100 kSamples/s (0.03% accuracy)</td>
<td>100 kSamples/s for DT9803/04 (0.01% accuracy);</td>
</tr>
<tr>
<td>Single analog channel:</td>
<td>100 kSamples/s (0.03% accuracy)</td>
<td>50 kSamples/s for DT9805/06 (0.01% accuracy);</td>
</tr>
<tr>
<td>Multiple channels (scan with gain of 1 to 10):</td>
<td>100 kSamples/s (0.03% accuracy)</td>
<td>100 kSamples/s for DT9803/04 (0.01% accuracy);</td>
</tr>
<tr>
<td>Multiple channels (scan with gain of 100):</td>
<td>–</td>
<td>50 kSamples/s for DT9805/06 (0.01% accuracy);</td>
</tr>
<tr>
<td>Data throughput (cont.) Multiple channels (scan with gain of 500):</td>
<td>–</td>
<td>2 kSamples/s (0.04% accuracy);</td>
</tr>
<tr>
<td>Single digital channel:</td>
<td>100 kSamples/s</td>
<td>100 kSamples/s for DT9803/04;</td>
</tr>
<tr>
<td>CJC Voltage @ 25°C</td>
<td>–</td>
<td>+0.250 V</td>
</tr>
<tr>
<td>Cold Junction Accuracy</td>
<td>–</td>
<td>+1° from 5° to 45° C</td>
</tr>
<tr>
<td>Break Detection Currentd</td>
<td>–</td>
<td>+250 nA (high side differential)</td>
</tr>
<tr>
<td>External A/D sample clock</td>
<td>HCT Rising-Edge Sensitive with 22 kΩ pull-up resistor</td>
<td></td>
</tr>
<tr>
<td>Input type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-level input voltage:</td>
<td>2.4 V minimum</td>
<td></td>
</tr>
<tr>
<td>Low-level input voltage:</td>
<td>0.8 V maximum</td>
<td></td>
</tr>
<tr>
<td>Minimum pulse width:</td>
<td>600 ns (high); 600 ns (low)</td>
<td></td>
</tr>
<tr>
<td>Maximum frequency:</td>
<td>750.0 kHz</td>
<td></td>
</tr>
<tr>
<td>External A/D digital (TTL) trigger</td>
<td>HCT Rising-Edge Sensitive with 22 kΩ pull-up resistor</td>
<td></td>
</tr>
<tr>
<td>Input type</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High-level input voltage:</td>
<td>2.4 V minimum</td>
<td></td>
</tr>
<tr>
<td>Low-level input voltage:</td>
<td>0.8 V maximum</td>
<td></td>
</tr>
<tr>
<td>Minimum pulse width:</td>
<td>600 ns (high); 600 ns (low)</td>
<td></td>
</tr>
<tr>
<td>Maximum frequency:</td>
<td>750.0 kHz</td>
<td></td>
</tr>
<tr>
<td>Dynamic Digital Output</td>
<td>TTL</td>
<td></td>
</tr>
<tr>
<td>Output driver:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output driver high voltage:</td>
<td>2.4 V maximum (IOH = 1 mA)</td>
<td></td>
</tr>
<tr>
<td>Output driver low voltage:</td>
<td>0.5 V maximum (IOL = 2 mA)</td>
<td></td>
</tr>
<tr>
<td>Back EMF Diodes</td>
<td>Yes</td>
<td></td>
</tr>
</tbody>
</table>

a. This value is referenced to voltage entering the A/D converter. To reference this value to the original voltage signal, use [(+/-25 + (5uV * Gain)] / Gain / degrees C.
b. On channel 0 only on the DT9805 and DT9806 modules, the input impedance is 10 kΩ.
c. Break detection current.
d. Broken thermocouples in differential mode will output plus full scale for gains equal to or greater than 10.
Analog Output Specifications

Table 36 lists the specifications for the D/A subsystem.

Table 36: D/A Subsystem Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>DT9802/-EC/-EC-I Specifications</th>
<th>DT9804/-EC/-EC-I, DT9806 Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of analog output channels</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Resolution</td>
<td>12 bits</td>
<td>16 bits</td>
</tr>
<tr>
<td>Data encoding (input)</td>
<td>Offset binary</td>
<td></td>
</tr>
<tr>
<td>Nonlinearity (integral)</td>
<td>±1 LSBs</td>
<td>±4 LSBs</td>
</tr>
<tr>
<td>Differential linearity</td>
<td>±0.5 LSBs (monotonic)</td>
<td>±1.0 LSB (monotonic)</td>
</tr>
<tr>
<td>Output range</td>
<td>0 to 5 V, 10 V</td>
<td>±10 V</td>
</tr>
<tr>
<td></td>
<td>±5 V, 10 V</td>
<td></td>
</tr>
<tr>
<td>Zero error</td>
<td>Software-adjustable to zero</td>
<td></td>
</tr>
<tr>
<td>Gain error</td>
<td>±2 LSBs</td>
<td>±6 LSBs</td>
</tr>
<tr>
<td>Current output</td>
<td>±5 mA minimum (10 V/ 2 kΩ)</td>
<td></td>
</tr>
<tr>
<td>Output impedance</td>
<td>0.3 Ω typical</td>
<td></td>
</tr>
<tr>
<td>Capacitive drive capability</td>
<td>0.001 μF minimum (no oscillations)</td>
<td></td>
</tr>
<tr>
<td>Protection</td>
<td>Short circuit to Analog Common</td>
<td></td>
</tr>
<tr>
<td>Power-on voltage</td>
<td>0 V ±10 mV maximum</td>
<td></td>
</tr>
<tr>
<td>Settling time to 0.01% of FSR</td>
<td>50 μs, 20 V step; 10 μs, 100 mV step</td>
<td></td>
</tr>
<tr>
<td>Throughput (Full Scale)</td>
<td>Single value (system dependent)</td>
<td></td>
</tr>
<tr>
<td>Slew rate</td>
<td>2 V/μs</td>
<td></td>
</tr>
</tbody>
</table>
Digital I/O Specifications

Table 37 lists the specifications for the digital input subsystem.

Table 37: DIN Subsystem Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lines</td>
<td>8 (Port A)</td>
</tr>
<tr>
<td>Termination</td>
<td>None</td>
</tr>
<tr>
<td>Inputs</td>
<td></td>
</tr>
<tr>
<td>Input type:</td>
<td>Level sensitive</td>
</tr>
<tr>
<td>Input load:</td>
<td>1 (HCT)</td>
</tr>
<tr>
<td>High-level input voltage:</td>
<td>2.0 V minimum</td>
</tr>
<tr>
<td>Low-level input voltage:</td>
<td>0.8 V maximum</td>
</tr>
<tr>
<td>High-level input current:</td>
<td>3 μA</td>
</tr>
<tr>
<td>Low-level input current:</td>
<td>−3 μA</td>
</tr>
<tr>
<td>Maximum internal pacer rate (single digital channel)<sup>a</sup></td>
<td>Maximum A/D throughput of the board</td>
</tr>
<tr>
<td>Back EMF diodes</td>
<td>No</td>
</tr>
</tbody>
</table>

^a This digital channel must be the only channel included as part of the channel list.

Table 38 lists the specifications for the digital output subsystem.

Table 38: DOUT Subsystem Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of lines</td>
<td>8 (Port B)</td>
</tr>
<tr>
<td>Termination</td>
<td>22 kΩ resistor</td>
</tr>
<tr>
<td>Outputs</td>
<td></td>
</tr>
<tr>
<td>Output driver:</td>
<td>74HCT244 (TTL)</td>
</tr>
<tr>
<td>Output driver high voltage (source):</td>
<td>2.4 V minimum (IOH = 1 mA)</td>
</tr>
<tr>
<td>Output driver low voltage (sink):</td>
<td>0.5 V maximum (IOL = 12 mA)</td>
</tr>
<tr>
<td>Back EMF diodes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Counter/Timer Specifications

Table 39 lists the specifications for the C/T subsystems.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of counter/timer channels</td>
<td>2</td>
</tr>
<tr>
<td>Clock Inputs</td>
<td></td>
</tr>
<tr>
<td>Input type:</td>
<td>HCT with 22 kΩ pull-up resistor</td>
</tr>
<tr>
<td>High-level input voltage:</td>
<td>2.4 V minimum</td>
</tr>
<tr>
<td>Low-level input voltage:</td>
<td>0.8 V maximum</td>
</tr>
<tr>
<td>Minimum pulse width:</td>
<td>600 ns (high); 600 ns (low)</td>
</tr>
<tr>
<td>Maximum frequency:</td>
<td>750 kHz</td>
</tr>
<tr>
<td>Gate Inputs</td>
<td></td>
</tr>
<tr>
<td>Input type:</td>
<td>HCT with 22 kΩ pull-up resistor</td>
</tr>
<tr>
<td>High-level input voltage:</td>
<td>2.4 V minimum</td>
</tr>
<tr>
<td>Low-level input voltage:</td>
<td>0.8 V maximum</td>
</tr>
<tr>
<td>Minimum pulse width:</td>
<td>600 ns (high); 600 ns (low)</td>
</tr>
<tr>
<td>Counter Outputs</td>
<td></td>
</tr>
<tr>
<td>Output driver high voltage:</td>
<td>3.0 V minimum @ 1 mA Source</td>
</tr>
<tr>
<td>Output driver low voltage:</td>
<td>0.4 V maximum @ 2 mA Sink</td>
</tr>
</tbody>
</table>
Power, Physical, and Environmental Specifications

Table 40 lists the power, physical, and environmental specifications for the DT9800 Series modules.

Table 40: Power, Physical, and Environmental Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power</td>
<td></td>
</tr>
<tr>
<td>+5 V Standby:</td>
<td>0.5 μA maximum</td>
</tr>
<tr>
<td>+5 V Enumeration:</td>
<td>100 mA maximum</td>
</tr>
<tr>
<td>+5 V Power ON:</td>
<td>500 mA maximum</td>
</tr>
<tr>
<td>+5 V Isolated Power Out (TB27)</td>
<td>10 mA maximum</td>
</tr>
<tr>
<td>Physical</td>
<td></td>
</tr>
<tr>
<td>Dimensions: DT9800 Standard Series:</td>
<td>6.5 inches x 4.5 inches x 1.4 inches</td>
</tr>
<tr>
<td>DT9800-EC and DT9800-EC-I Series:</td>
<td>7.42 inches x 3.40 x 0.736 inches</td>
</tr>
<tr>
<td>Weight:</td>
<td>9 ounces (255 grams)</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>Operating temperature range:</td>
<td>0°C to 55°C</td>
</tr>
<tr>
<td>Storage temperature range:</td>
<td>−25°C to 85°C</td>
</tr>
<tr>
<td>Relative humidity:</td>
<td>To 95%, noncondensing</td>
</tr>
</tbody>
</table>
Cable and Terminal Block Specifications

Table 41 lists the screw terminal and cable specifications for the DT9800 Standard modules.

Table 41: DT9800 Standard Cable and Terminal Block Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommended cable</td>
<td>2-meter, Type A-B, USB cable</td>
</tr>
<tr>
<td></td>
<td>AMP part 1487588-3</td>
</tr>
<tr>
<td>Screw terminal block (TB1-TB6)</td>
<td>9-Position Header:</td>
</tr>
<tr>
<td></td>
<td>PCD, Inc. part ELVH09100</td>
</tr>
<tr>
<td></td>
<td>Mating plug:</td>
</tr>
<tr>
<td></td>
<td>PCD, Inc. part ELVP09100</td>
</tr>
</tbody>
</table>

Table 42 lists the connector specifications for the DT9800-EC and DT9800-EC-I Series modules.

Table 42: DT9800-EC/EC-I Connector Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Header</th>
<th>Mating Cable Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>26-pin connector (J5, J6)</td>
<td>AMP/Tyco part 1761686-9</td>
<td>AMP/Tyco part 1658622-6</td>
</tr>
<tr>
<td>50 pin connector (J4)</td>
<td>AMP/Tyco part 1-1761686-5</td>
<td>AMP/Tyco part 1-1658622-0</td>
</tr>
</tbody>
</table>
Regulatory Specifications

Table 43 lists the regulatory specifications for the DT9800 Series modules.

Table 43: Regulatory Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emissions (EMI)</td>
<td>FCC Part 15,</td>
</tr>
<tr>
<td></td>
<td>VCCI, AS/NZS 3548</td>
</tr>
<tr>
<td></td>
<td>Class A</td>
</tr>
<tr>
<td>Immunity</td>
<td>EN61000-6-1:2001</td>
</tr>
<tr>
<td>RoHS (EU Directive 2002/95/EG)</td>
<td>Compliant (as of July 1st, 2006)</td>
</tr>
</tbody>
</table>
Connector Pin Assignments

DT9800 Standard Series .. 162
EC and EC-I Series Modules ... 164
DT9804 BNC Modules .. 167
DT9800 Standard Series

Table 44 lists the pin assignments of connector J1 on the DT9800 Standard modules.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Description</th>
<th>Pin</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analog Input 00/ CJC on DT9805/DT9806</td>
<td>2</td>
<td>Analog Input 08/00 Return</td>
</tr>
<tr>
<td>3</td>
<td>Analog Input 01</td>
<td>4</td>
<td>Analog Input 09/01 Return</td>
</tr>
<tr>
<td>5</td>
<td>Analog Input 02</td>
<td>6</td>
<td>Analog Input 10/02 Return</td>
</tr>
<tr>
<td>7</td>
<td>Analog Input 03</td>
<td>8</td>
<td>Analog Input 11/03 Return</td>
</tr>
<tr>
<td>9</td>
<td>Analog Input 04</td>
<td>10</td>
<td>Analog Input 12/04 Return</td>
</tr>
<tr>
<td>11</td>
<td>Analog Input 05</td>
<td>12</td>
<td>Analog Input 13/05 Return</td>
</tr>
<tr>
<td>13</td>
<td>Analog Input 06</td>
<td>14</td>
<td>Analog Input 14/06 Return</td>
</tr>
<tr>
<td>15</td>
<td>Analog Input 07</td>
<td>16</td>
<td>Analog Input 15/07 Return</td>
</tr>
<tr>
<td>17</td>
<td>Isolated Analog Ground</td>
<td>18</td>
<td>Amp Low</td>
</tr>
<tr>
<td>19</td>
<td>Analog Output 0+</td>
<td>20</td>
<td>Analog Output 0 Return</td>
</tr>
<tr>
<td>21</td>
<td>Analog Output 1+</td>
<td>22</td>
<td>Analog Output 1 Return</td>
</tr>
<tr>
<td>23</td>
<td>Isolated Digital Ground</td>
<td>24</td>
<td>External A/D Trigger</td>
</tr>
<tr>
<td>25</td>
<td>External A/D Sample Clock In</td>
<td>26</td>
<td>Isolated Digital Ground</td>
</tr>
<tr>
<td>27</td>
<td>Isolated +5 V Out(^a)</td>
<td>28</td>
<td>Digital Input 0</td>
</tr>
<tr>
<td>29</td>
<td>Digital Input 1</td>
<td>30</td>
<td>Digital Input 2</td>
</tr>
<tr>
<td>31</td>
<td>Digital Input 3</td>
<td>32</td>
<td>Digital Input 4</td>
</tr>
<tr>
<td>33</td>
<td>Digital Input 5</td>
<td>34</td>
<td>Digital Input 6</td>
</tr>
<tr>
<td>35</td>
<td>Digital Input 7</td>
<td>36</td>
<td>Isolated Digital Ground</td>
</tr>
<tr>
<td>37</td>
<td>Isolated Digital Ground</td>
<td>38</td>
<td>Digital Output 7</td>
</tr>
<tr>
<td>39</td>
<td>Digital Output 6</td>
<td>40</td>
<td>Digital Output 5</td>
</tr>
<tr>
<td>41</td>
<td>Digital Output 4</td>
<td>42</td>
<td>Digital Output 3</td>
</tr>
<tr>
<td>43</td>
<td>Digital Output 2</td>
<td>44</td>
<td>Digital Output 1</td>
</tr>
<tr>
<td>45</td>
<td>Digital Output 0</td>
<td>46</td>
<td>Dynamic Digital Output</td>
</tr>
<tr>
<td>47</td>
<td>Isolated Digital Ground</td>
<td>48</td>
<td>External Gate 1</td>
</tr>
<tr>
<td>49</td>
<td>User Counter Output 1</td>
<td>50</td>
<td>User Clock Input 1</td>
</tr>
<tr>
<td>51</td>
<td>Isolated Digital Ground</td>
<td>52</td>
<td>External Gate 0</td>
</tr>
<tr>
<td>53</td>
<td>User Counter Output 0</td>
<td>54</td>
<td>User Clock Input 0</td>
</tr>
</tbody>
</table>

\(^a\) +5 V output is available only when one of the subsystems is activated, which, in turn, activates power to the module.
Figure 62 shows the screw terminal assignments of the DT9800 Standard modules.
EC and EC-I Series Modules

Table 45 lists the pin assignments for connector J6; Table 46 lists the pin assignments for connector J5; and Table 47 lists the pin assignments for connector J4 on the DT9800-EC and DT9800-EC-I Series modules.

Table 45: Connector J6 Pin Assignments

<table>
<thead>
<tr>
<th>J6 Pin #</th>
<th>AC1324 Screw Terminal</th>
<th>Signal Name</th>
<th>J6 Pin #</th>
<th>AC1324 Screw Terminal</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TB1</td>
<td>Analog Input 0</td>
<td>2</td>
<td>TB2</td>
<td>Analog Input 0 Return/Analog Input 8</td>
</tr>
<tr>
<td>3</td>
<td>TB3</td>
<td>Isolated Analog Ground<sup>b</sup></td>
<td>4</td>
<td>TB4</td>
<td>Analog Input 1 Return/Analog Input 9</td>
</tr>
<tr>
<td>5</td>
<td>TB5</td>
<td>Analog Input 1</td>
<td>6</td>
<td>TB6</td>
<td>Isolated Analog Ground<sup>b</sup></td>
</tr>
<tr>
<td>7</td>
<td>TB7</td>
<td>Analog Input 2</td>
<td>8</td>
<td>TB8</td>
<td>Analog Input 2 Return/Analog Input 10</td>
</tr>
<tr>
<td>9</td>
<td>TB9</td>
<td>Isolated Analog Ground<sup>b</sup></td>
<td>10</td>
<td>TB10</td>
<td>Analog Input 3 Return/Analog Input 11</td>
</tr>
<tr>
<td>11</td>
<td>TB11</td>
<td>Analog Input 3</td>
<td>12</td>
<td>TB12</td>
<td>Isolated Analog Ground<sup>b</sup></td>
</tr>
<tr>
<td>13</td>
<td>TB13</td>
<td>Analog Input 4</td>
<td>14</td>
<td>TB14</td>
<td>Analog Input 4 Return/Analog Input 12</td>
</tr>
<tr>
<td>15</td>
<td>TB15</td>
<td>Isolated Analog Ground<sup>b</sup></td>
<td>16</td>
<td>TB16</td>
<td>Analog Input 5 Return/Analog Input 13</td>
</tr>
<tr>
<td>17</td>
<td>TB17</td>
<td>Analog Input 5</td>
<td>18</td>
<td>TB18</td>
<td>Isolated Analog Ground<sup>b</sup></td>
</tr>
<tr>
<td>19</td>
<td>TB19</td>
<td>Analog Input 6</td>
<td>20</td>
<td>TB20</td>
<td>Analog Input 6 Return/Analog Input 14</td>
</tr>
<tr>
<td>21</td>
<td>TB21</td>
<td>Not Connected</td>
<td>22</td>
<td>TB22</td>
<td>Analog Input 7 Return/Analog Input 15</td>
</tr>
<tr>
<td>23</td>
<td>TB23</td>
<td>Analog Input 7</td>
<td>24</td>
<td>TB24</td>
<td>Isolated Analog Ground<sup>b</sup></td>
</tr>
<tr>
<td>25</td>
<td>TB25</td>
<td>Amp Low</td>
<td>26</td>
<td>TB26</td>
<td>External A/D Trigger</td>
</tr>
</tbody>
</table>

^a Analog input signals 8 to 15 are not available on the 5B08 or 7BP08-1 backplane. Analog input signals 4 to 15 are not available on the 7BP04-1 backplane.

^b This signal is not isolated on the DT9800-EC Series boards.
Table 46: Connector J5 Pin Assignments

<table>
<thead>
<tr>
<th>J5 Pin #</th>
<th>AC1324 Screw Terminal</th>
<th>Signal Name</th>
<th>J5 Pin #</th>
<th>AC1324 Screw Terminal</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TB1</td>
<td>Analog Output 0</td>
<td>2</td>
<td>TB2</td>
<td>Analog Output 0 Return</td>
</tr>
<tr>
<td>3</td>
<td>TB3</td>
<td>Analog Output 1</td>
<td>4</td>
<td>TB4</td>
<td>Analog Output 1 Return</td>
</tr>
<tr>
<td>5</td>
<td>TB5</td>
<td>Isolated Digital Ground<sup>a</sup></td>
<td>6</td>
<td>TB6</td>
<td>External A/D Trigger</td>
</tr>
<tr>
<td>7</td>
<td>TB7</td>
<td>External A/D Sample Clock</td>
<td>8</td>
<td>TB8</td>
<td>Isolated Digital Ground<sup>a</sup></td>
</tr>
<tr>
<td>9</td>
<td>TB9</td>
<td>Isolated +5 V Output<sup>a,b</sup></td>
<td>10</td>
<td>TB10</td>
<td>Not Connected</td>
</tr>
<tr>
<td>11</td>
<td>TB11</td>
<td>Not Connected</td>
<td>12</td>
<td>TB12</td>
<td>Dynamic Digital Output</td>
</tr>
<tr>
<td>13</td>
<td>TB13</td>
<td>Isolated Digital Ground<sup>a</sup></td>
<td>14</td>
<td>TB14</td>
<td>User External Gate 1</td>
</tr>
<tr>
<td>15</td>
<td>TB15</td>
<td>User Counter Output 1</td>
<td>16</td>
<td>TB16</td>
<td>User Clock Input 1</td>
</tr>
<tr>
<td>17</td>
<td>TB17</td>
<td>Isolated Digital Ground<sup>a</sup></td>
<td>18</td>
<td>TB18</td>
<td>User External Gate 0</td>
</tr>
<tr>
<td>19</td>
<td>TB19</td>
<td>User Counter Output 0</td>
<td>20</td>
<td>TB20</td>
<td>User Clock Input 0</td>
</tr>
<tr>
<td>21</td>
<td>TB21</td>
<td>Not Connected</td>
<td>22</td>
<td>TB22</td>
<td>Not Connected</td>
</tr>
<tr>
<td>23</td>
<td>TB23</td>
<td>Not Connected</td>
<td>24</td>
<td>TB24</td>
<td>Not Connected</td>
</tr>
<tr>
<td>25</td>
<td>TB25</td>
<td>Not Connected</td>
<td>26</td>
<td>TB26</td>
<td>Not Connected</td>
</tr>
</tbody>
</table>

^a This signal is not isolated on the DT9800-EC Series.
^b +5 V output is available only when one of the subsystems is activated, which, in turn, activates power to the module. This signal can be used as an input to power the digital output latch so that the outputs retain their states during power down.
Table 47: Connector J4 Pin Assignments

<table>
<thead>
<tr>
<th>J4 Pin #</th>
<th>STP-EZ Screw Terminal</th>
<th>Signal Name</th>
<th>J4 Pin #</th>
<th>STP-EZ Screw Terminal</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>TB1</td>
<td>Not Connected</td>
<td>2</td>
<td>TB2</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>3</td>
<td>TB3</td>
<td>Not Connected</td>
<td>4</td>
<td>TB4</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>5</td>
<td>TB5</td>
<td>Not Connected</td>
<td>6</td>
<td>TB6</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>7</td>
<td>TB7</td>
<td>Not Connected</td>
<td>8</td>
<td>TB8</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>9</td>
<td>TB9</td>
<td>Not Connected</td>
<td>10</td>
<td>TB10</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>11</td>
<td>TB11</td>
<td>Not Connected</td>
<td>12</td>
<td>TB12</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>13</td>
<td>TB13</td>
<td>Not Connected</td>
<td>14</td>
<td>TB14</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>15</td>
<td>TB15</td>
<td>Not Connected</td>
<td>16</td>
<td>TB16</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>17</td>
<td>TB17</td>
<td>Digital Output 7</td>
<td>18</td>
<td>TB18</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>19</td>
<td>TB19</td>
<td>Digital Output 6</td>
<td>20</td>
<td>TB20</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>21</td>
<td>TB21</td>
<td>Digital Output 5</td>
<td>22</td>
<td>TB22</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>23</td>
<td>TB23</td>
<td>Digital Output 4</td>
<td>24</td>
<td>TB24</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>25</td>
<td>TB25</td>
<td>Digital Output 3</td>
<td>26</td>
<td>TB26</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>27</td>
<td>TB27</td>
<td>Digital Output 2</td>
<td>28</td>
<td>TB28</td>
<td>Not Connected</td>
</tr>
<tr>
<td>29</td>
<td>TB29</td>
<td>Digital Output 1</td>
<td>30</td>
<td>TB30</td>
<td>Not Connected</td>
</tr>
<tr>
<td>31</td>
<td>TB31</td>
<td>Digital Output 0</td>
<td>32</td>
<td>TB32</td>
<td>Not Connected</td>
</tr>
<tr>
<td>33</td>
<td>TB33</td>
<td>Digital Input 7</td>
<td>34</td>
<td>TB34</td>
<td>Not Connected</td>
</tr>
<tr>
<td>35</td>
<td>TB35</td>
<td>Digital Input 6</td>
<td>36</td>
<td>TB36</td>
<td>Not Connected</td>
</tr>
<tr>
<td>37</td>
<td>TB37</td>
<td>Digital Input 5</td>
<td>38</td>
<td>TB38</td>
<td>Not Connected</td>
</tr>
<tr>
<td>39</td>
<td>TB39</td>
<td>Digital Input 4</td>
<td>40</td>
<td>TB40</td>
<td>Not Connected</td>
</tr>
<tr>
<td>41</td>
<td>TB41</td>
<td>Digital Input 3</td>
<td>42</td>
<td>TB42</td>
<td>Not Connected</td>
</tr>
<tr>
<td>43</td>
<td>TB43</td>
<td>Digital Input 2</td>
<td>44</td>
<td>TB44</td>
<td>Not Connected</td>
</tr>
<tr>
<td>45</td>
<td>TB45</td>
<td>Digital Input 1</td>
<td>46</td>
<td>TB46</td>
<td>Not Connected</td>
</tr>
<tr>
<td>47</td>
<td>TB47</td>
<td>Digital Input 0</td>
<td>48</td>
<td>TB48</td>
<td>Not Connected</td>
</tr>
<tr>
<td>49</td>
<td>TB49</td>
<td>Not Connected</td>
<td>50</td>
<td>TB50</td>
<td>Not Connected</td>
</tr>
</tbody>
</table>
DT9804 BNC Modules

This section provides information about using the DT9804-EC-I-8DI-BNC and DT9804-EC-I-16SE-BNC USB modules.

The DT9804-EC-I-8DI-BNC and DT9804-EC-I-16SE-BNC configurations package the DT9804 module in a special aluminum case, called a BNC box. The DT9804-EC-I-8DI-BNC, shown in Figure 63, provides BNC connectors for 8 differential analog inputs. The DT9804-EC-I-16SE-BNC, shown in Figure 64, provides BNC connectors for 16 single-ended analog inputs.

Both configurations provide BNC connectors for the A/D trigger and A/D clock signals. These signals as well as the digital I/O and counter/timer signals are also accessible through 37-pin, D-sub connectors on the BNC box.
Note: A USB connector, provided on the side panel, allows you to connect directly to the host computer using a USB cable.

Mechanical Specifications

Table 48 lists the mechanical specifications for the BNC box.

Table 48: BNC Box Mechanical Specifications

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Aluminum, optional DIN-rail mountable</td>
</tr>
<tr>
<td>Dimensions</td>
<td>216 mm x 106 mm x 50.3 mm (8.5 inches x 4.17 inches x 1.98 inches)</td>
</tr>
<tr>
<td>BNC Connectors</td>
<td></td>
</tr>
<tr>
<td>Analog Input</td>
<td>16 BNCs for 16 single-ended analog or 8 BNCs for 8 differential inputs</td>
</tr>
<tr>
<td>Analog output</td>
<td>2 BNCs for 2 differential analog outputs</td>
</tr>
<tr>
<td>A/D Clock Input</td>
<td>1 BNC for an A/D TTL clock input</td>
</tr>
<tr>
<td>A/D Trigger Input</td>
<td>1 BNC for an A/D TTL trigger input</td>
</tr>
</tbody>
</table>

Table 49 lists the connector specifications.

Table 49: Mating Cable Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Part Number on Module (or Equivalent)</th>
<th>Mating Cable Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Input (J20)</td>
<td>AMP/Tyco 5747375-8</td>
<td>AMP/Tyco 5-747917-2</td>
</tr>
<tr>
<td>Digital I/O (J22)</td>
<td>AMP/Tyco 5747301-8</td>
<td>AMP/Tyco 5-747916-2</td>
</tr>
<tr>
<td>C/T, DAC, Clk, Trig (J21)</td>
<td>AMP/Tyco 5747301-8</td>
<td>AMP/Tyco 5-747916-2</td>
</tr>
</tbody>
</table>
Table 50 lists the pin assignments for the analog input connector (J20) on the BNC box.

Table 50: Analog Input Connector (J20) Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Description</th>
<th>Pin</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analog Input 0</td>
<td>2</td>
<td>Analog Input 1</td>
</tr>
<tr>
<td>3</td>
<td>Analog Input 2</td>
<td>4</td>
<td>Analog Input 3</td>
</tr>
<tr>
<td>5</td>
<td>Analog Input 4</td>
<td>6</td>
<td>Analog Input 5</td>
</tr>
<tr>
<td>7</td>
<td>Analog Input 6</td>
<td>8</td>
<td>Analog Input 7</td>
</tr>
<tr>
<td>9</td>
<td>Not used</td>
<td>10</td>
<td>Not used</td>
</tr>
<tr>
<td>11</td>
<td>Not used</td>
<td>12</td>
<td>Not used</td>
</tr>
<tr>
<td>13</td>
<td>Not used</td>
<td>14</td>
<td>Not used</td>
</tr>
<tr>
<td>15</td>
<td>Not used</td>
<td>16</td>
<td>Not used</td>
</tr>
<tr>
<td>17</td>
<td>Amplifier Low</td>
<td>18</td>
<td>+5 V Analog</td>
</tr>
<tr>
<td>19</td>
<td>Not used</td>
<td>20</td>
<td>Analog Input 0 Return/Analog In 8<sup>a</sup></td>
</tr>
<tr>
<td>21</td>
<td>Analog Input 1 Return/Analog In 9<sup>a</sup></td>
<td>22</td>
<td>Analog Input 2 Return/Analog In 10<sup>a</sup></td>
</tr>
<tr>
<td>23</td>
<td>Analog Input 3 Return/Analog In 11<sup>a</sup></td>
<td>24</td>
<td>Analog Input 4 Return/Analog In 12<sup>a</sup></td>
</tr>
<tr>
<td>25</td>
<td>Analog Input 5 Return/Analog In 13<sup>a</sup></td>
<td>26</td>
<td>Analog Input 6 Return/Analog In 14<sup>a</sup></td>
</tr>
<tr>
<td>27</td>
<td>Analog Input 7 Return/Analog In 15<sup>a</sup></td>
<td>28</td>
<td>Not used</td>
</tr>
<tr>
<td>29</td>
<td>Not used</td>
<td>30</td>
<td>Not used</td>
</tr>
<tr>
<td>31</td>
<td>Not used</td>
<td>32</td>
<td>Not used</td>
</tr>
<tr>
<td>33</td>
<td>Not used</td>
<td>34</td>
<td>Not used</td>
</tr>
<tr>
<td>35</td>
<td>Not used</td>
<td>36</td>
<td>Analog Ground</td>
</tr>
<tr>
<td>37</td>
<td>Digital Ground</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a The first signal description (Return) applies to the differential configuration for all modules. The second signal description applies to the single-ended configuration for the module.
Table 51 lists the pin assignments for the digital I/O connector (J22) on the BNC box.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Description</th>
<th>Pin</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Digital Input 0</td>
<td>2</td>
<td>Digital Input 1</td>
</tr>
<tr>
<td>3</td>
<td>Digital Input 2</td>
<td>4</td>
<td>Digital Input 3</td>
</tr>
<tr>
<td>5</td>
<td>Digital Input 4</td>
<td>6</td>
<td>Digital Input 5</td>
</tr>
<tr>
<td>7</td>
<td>Digital Input 6</td>
<td>8</td>
<td>Digital Input 7</td>
</tr>
<tr>
<td>9</td>
<td>Not used</td>
<td>10</td>
<td>Not used</td>
</tr>
<tr>
<td>11</td>
<td>Not used</td>
<td>12</td>
<td>Not used</td>
</tr>
<tr>
<td>13</td>
<td>Not used</td>
<td>14</td>
<td>Not used</td>
</tr>
<tr>
<td>15</td>
<td>Not used</td>
<td>16</td>
<td>Not used</td>
</tr>
<tr>
<td>17</td>
<td>Digital Ground</td>
<td>18</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>19</td>
<td>Not used</td>
<td>20</td>
<td>Digital Output 0</td>
</tr>
<tr>
<td>21</td>
<td>Digital Output 1</td>
<td>22</td>
<td>Digital Output 2</td>
</tr>
<tr>
<td>23</td>
<td>Digital Output 3</td>
<td>24</td>
<td>Digital Output 4</td>
</tr>
<tr>
<td>25</td>
<td>Digital Output 5</td>
<td>26</td>
<td>Digital Output 6</td>
</tr>
<tr>
<td>27</td>
<td>Digital Output 7</td>
<td>28</td>
<td>Not used</td>
</tr>
<tr>
<td>29</td>
<td>Not used</td>
<td>30</td>
<td>Not used</td>
</tr>
<tr>
<td>31</td>
<td>Not used</td>
<td>32</td>
<td>Not used</td>
</tr>
<tr>
<td>33</td>
<td>Not used</td>
<td>34</td>
<td>Not used</td>
</tr>
<tr>
<td>35</td>
<td>Not used</td>
<td>36</td>
<td>Dynamic Digital Output</td>
</tr>
<tr>
<td>37</td>
<td>Digital Ground</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 52 lists the pin assignments for the counter/timer, analog output, clock, and trigger connector (J21) on the BNC box.

Table 52: Counter/Timer, Analog Output, Clock, and Trigger Connector (J21) Pin Assignments

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal Description</th>
<th>Pin</th>
<th>Signal Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Analog Output 0</td>
<td>2</td>
<td>Analog Output 1</td>
</tr>
<tr>
<td>3</td>
<td>Not used</td>
<td>4</td>
<td>Not used</td>
</tr>
<tr>
<td>5</td>
<td>Digital Ground</td>
<td>6</td>
<td>Not used</td>
</tr>
<tr>
<td>7</td>
<td>External ADC Clock</td>
<td>8</td>
<td>Counter 0 Clock</td>
</tr>
<tr>
<td>9</td>
<td>Counter 0 Out</td>
<td>10</td>
<td>Counter 1 Clock</td>
</tr>
<tr>
<td>11</td>
<td>Counter 1 Out</td>
<td>12</td>
<td>Not used</td>
</tr>
<tr>
<td>13</td>
<td>Not used</td>
<td>14</td>
<td>Not used</td>
</tr>
<tr>
<td>15</td>
<td>Not used</td>
<td>16</td>
<td>Not used</td>
</tr>
<tr>
<td>17</td>
<td>Not used</td>
<td>18</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>19</td>
<td>Not used</td>
<td>20</td>
<td>Analog Output 0 Return</td>
</tr>
<tr>
<td>21</td>
<td>Analog Output 1 Return</td>
<td>22</td>
<td>Not used</td>
</tr>
<tr>
<td>23</td>
<td>Not used</td>
<td>24</td>
<td>Digital Ground</td>
</tr>
<tr>
<td>25</td>
<td>Not used</td>
<td>26</td>
<td>External ADC Trigger</td>
</tr>
<tr>
<td>27</td>
<td>Digital Ground</td>
<td>28</td>
<td>Counter 0 Gate</td>
</tr>
<tr>
<td>29</td>
<td>Digital Ground</td>
<td>30</td>
<td>Counter 1 Gate</td>
</tr>
<tr>
<td>31</td>
<td>Digital Ground</td>
<td>32</td>
<td>Not used</td>
</tr>
<tr>
<td>33</td>
<td>Digital Ground</td>
<td>34</td>
<td>Not used</td>
</tr>
<tr>
<td>35</td>
<td>Digital Ground</td>
<td>36</td>
<td>Not used</td>
</tr>
<tr>
<td>37</td>
<td>Digital Ground</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Index

Numerics

50-pin cable 35
5B01 21, 32
 attaching to a module 33
 considerations when connecting signals 62
5B08 21, 32
 attaching to a module 33
 considerations when connecting signals 62
7BP04-1 21, 32
 attaching to a module 33
 considerations when connecting signals 62
7BP08-1 21, 32
 attaching to a module 33
 considerations when connecting signals 62
7BP16-1 21, 32
 attaching to a module 33
 considerations when connecting signals 62

A

A/D FIFO Full Flag 107
A/D Over Sample error 107
A/D sample clock 98
 external 99
 internal 99
A/D subsystem 93
 specifications 152
A/D trigger 100
AC1315 cable 21, 33, 34
AC1324 screw terminal panel 21, 32
 attaching 34
AC1393 adapter cable 21, 34
accessories 21
aliasing 99
analog input features 93
 A/D sample clock 98
 calibrating 140
 channel list 94
 channels 94
 conversion modes 100
 data format 104
 data transfer 107
 differential inputs 47, 63
 error conditions 107
 gain 96
 input ranges 96
 pseudo-differential inputs 47, 63
 resolution 93
 single-ended inputs 46, 63
 specifications 152
 testing 82, 84
 triggers 100
 wiring current loop inputs 51, 68
 wiring differential inputs 49, 65
 wiring pseudo-differential inputs 48, 65
 wiring single-ended inputs 47, 64
 wiring thermocouples 52
analog output features 108
 calibrating 142, 144
 channels 108
 connecting 69
 conversion mode 109
 data format 110
 gain 109
 output ranges 109
 resolution 108
 specifications 155
 testing 83
 wiring 53
application wiring
 analog outputs 53, 69
 current loop analog inputs 51, 68
 differential analog inputs 49, 65
 digital inputs and outputs 53, 70
 event counting applications 54, 55, 74
 externally cascaded counter/timers 55, 57, 58, 75, 77, 78
 frequency measurement applications 56, 76
 pseudo-differential analog inputs 48, 65
 pulse output applications 57, 77
 single-ended analog inputs 47, 64
 thermocouple analog inputs 52
applications
 QuickDAQ 18
 attaching backplanes 32
 attaching the module to the computer 29
 autoranging 100

B

banks (digital I/O) 111
base clock frequency 133
BaseClockFrequency 133
bias return resistance 39, 49, 65
binary data encoding 126
buffers 126
inprocess flush 126
single wrap mode 126

C
C/C++ programs 20
C/T clock sources 113
cascaded C/T clock 114
external C/T clock 114
internal C/T clock 114
C/T subsystem 113
specifications 157
cables
50-pin to STP-EZ 35
AC1315 21, 33, 34
AC1393 21
AC1393 adapter 34
EP035 21, 34
EP365 21, 29
calibration
analog input subsystem 140
analog output subsystem 142, 144
running the utility 139
Calibration utility 20
cascading counter/timers 114, 134
externally 55, 57, 58, 75, 77, 78
CGL, see channel-gain list 127
CGLDepth 127
channel type
differential 127
single-ended 127
channel-gain list 94
depth 127
channels
analog input 94
analog output 108
counter/timer 113
digital I/O 111
number of 127
CJC
on 5B Series modules 41, 62
on the DT9805 and DT9806 52
CJC Adj. box 143
CJC channel 130
available 130
CjcChannel 130
clocks
base frequency 133
e external 133
e external A/D sample clock 99
e external C/T clock 114
internal 133
internal A/D sample clock 99
internal C/T clock 114
internal retrigger clock 102
internally cascaded C/T clock 114
maximum external clock divider 133
maximum throughput 133
minimum external clock divider 133
minimum throughput 133
configuring the device driver 39
configuring the DT9800-EC and DT9800-EC-I modules 40
connecting signals
analog outputs 53, 69
current loop analog inputs 51, 68
differential analog inputs 49, 65
digital inputs and outputs 53, 70
event counting applications 54, 55, 74
externally cascaded counter/timers 55, 57, 58, 75, 77, 78
frequency measurement applications 56, 76
pseudo-differential analog inputs 48, 65
pulse output applications 57, 77
single-ended analog inputs 47, 64
thermocouple analog inputs 52
connecting to the host computer
directly 29
using a self-powered USB hub 30
connector J1 pin assignments 162
connectors
J4 32
J5 32
J6 32
continuous analog input
post-trigger 125
continuous analog output 125
continuous counter/timer 125
continuous digital I/O 125
continuous operations
continuously paced scan mode 101
counter/timer 119
e externally-retriggered scan mode 104
software-retriggered scan mode 102
conversion modes 100
continuously paced scan mode 101
dynamic digital output 112
externally-retriggered scan mode 104
single-value analog input 100
single-value analog output 109
single-value digital I/O 112
software-retrigged scan mode 102
conversion rate 101, 102, 104
counter/timer features 113
cascading 134
cascading externally 55, 57, 58, 75, 77, 78
cascading internally 114
channels 127
clock sources 133
duty cycle 116
event counting 134
gate types 115
high-edge gate type 134
high-level gate type 134
high-to-low output pulse 134
internal gate type 134
low-edge gate type 134
low-level gate type 134
low-to-high output pulse 134
one-shot mode 134
operation modes 117
pulse output types 116
rate generation mode 134
repetitive one-shot mode 134
specifications 157
units 113
variable pulse width 134
wiring event counting signals 54, 55, 74
wiring frequency measurement signals 56, 76
wiring pulse output signals 57, 77
counting events 117
current loop inputs 51, 68
customer service 149

counting events 117
current loop inputs 51, 68
customer service 149

d
D/A subsystem 108
specifications 155
DAC0 Adjustment box 144
DAC0 Voltage box 144
DAC1 Adjustment box 144
DAC1 Voltage box 144
DAQ Adaptor for MATLAB 20
data encoding 104, 110, 126
data flow modes
continuous C/T 125
continuous digital input 125
continuous digital input operations 112
continuous post-trigger 125
data format
analog input 104
analog output 110
data transfer 107
DataAcq SDK 20
description of the functional subsystems
A/D 93
C/T 113
D/A 108
DIN and DOUT 111
device driver 18
differential channels 127
differential inputs 47, 63
digital I/O features 111
lines 111
operation modes 112
resolution 111
specifications 156
specifying a digital input port in analog input
channel list 95
testing 85, 86
wiring 53, 70
digital trigger 100
DIN subsystem 111
specifications 156
DIP switch SW1 40
DOUT subsystem 111
specifications 156
DT9800 Series Device Driver 18, 39
DT-Open Layers for .NET Class Library 20
duty Open Layers for .NET Class Library 20
duty cycle 116
dynamic digital output 95, 112

e
edge gate type
high 115
low 115
encoding data
analog input 104
analog output 110
environmental specifications 158, 159
EP035 21, 34
EP365 21, 29
errors, analog input 107
event counting 54, 74, 117, 134
external clock 133
A/D sample 99
C/T 114
external clock divider
 maximum 133
 minimum 133
external positive digital trigger 100, 132
externally-retriggered scan mode 104

F
factory service 149
falling-edge gate 115
features 16
formatting data
 analog input 104
 analog output 110
frequency
 base clock 133
 external A/D sample clock 100
 external C/T clock 114
 internal A/D clock 133
 internal A/D sample clock 99, 133
 internal C/T clock 114, 133
 internal retrigger clock 102, 126
frequency measurement 56, 76, 87, 118

G
gain
 actual available 127
 analog input 96
 analog output 109
 number of 127
 programmable 127
Gain box 141
gate type 115
 falling edge 115
 high-edge 134
 high-level 134
 internal 134
 logic-high level 115
 logic-low level 115
 low-edge 134
 low-level 134
 none (software) 115
 rising edge 115
generating continuous pulses 119

H
help, online 81
HESI4-21 power supply 21
high-edge gate type 115, 134
high-level gate type 134
high-to-low pulse output 116
hot-swapping 30, 31

I
inprocess buffers 126
input configuration
 differential analog 47, 63
 pseudo-differential analog 47, 63
 single-ended analog 46, 63
input ranges 96
installing the Quick Data Acq application 81
internal clock 133
 A/D sample 99
 C/T 114
 cascaded C/T 114
internal gate type 134
internal retrigger clock 102

J
J1 connector pin assignments 162
J4 connector 32
J5 connector 32
J6 connector 32
jumper W3 62

L
LabVIEW 20
level gate type
 high 115
 low 115
 logic-high level gate type 115
 logic-low level gate type 115
 low-edge gate type 115, 134
 low-level gate type 134
 low-to-high pulse output 116
 LV-Link 20

M
MaxDifferentialChannels 127
MaxExtClockDivider 133
MaxFrequency 133
MaxMultiScanCount 126
MaxRetriggerFreq 126
MaxSingleEndedChannels 127
measuring frequency 118
MinExtClockDivider 133
Index

MinFrequency 133
MinRetriggerFreq 126
module specifications 158, 159

N
number of
differential channels 127
gains 127
I/O channels 127
resolutions 128
scans per trigger 126
single-ended channels 127
voltage ranges 128
NumberOfChannels 127
NumberOfRanges 128
NumberOfResolutions 128
NumberOfSupportedGains 127
Nyquist Theorem 99

O
Offset box 141
one-shot mode 120
one-shot pulse output 134
online help 81
operation modes
continuous digital input 112
continuously paced scan mode 101
event counting 117
frequency measurement 118
one-shot pulse output 120
rate generation 119
repetitive one-shot pulse output 121
single-value analog input 100
single-value analog output 109
single-value digital I/O 112
software-retriggered scan mode 102
Opto-22 backplane 21, 32
attaching 34
orderly stop 100
output pulses 57, 77, 88, 134
output ranges 109
outputting pulses
continuously 119
one-shot 120
repetitive one-shot 121

P
PB16H Opto-22 backplane 21, 32
attaching 34
PGL Zero box 142
physical specifications 158, 159
pin assignments 162
ports 111
post-trigger acquisition mode 125
power specifications 158, 159
power supply
HES14-21 21
PWR-977 21
pseudo-differential inputs 47, 63
pulse output
duty cycle 116
one-shot 120
rate generation 119
repetitive one-shot 121
testing 88
types 116
wiring 57, 77
pulse train output 119
pulse width 116
PWR-977 power supply 21

Q
Quick Data Acq 18
installing 81
running 81
QuickDAQ
Advanced FFT Analysis option 19
Base version 18
FFT Analysis option 19

R
ranges
analog input 96
analog output 109
number of 128
rate generation 134
repetitive one-shot mode 121, 134
resolution
analog input 93
analog output 108
available 128
digital I/O 111
number of 128
retrigger 104
retrigger clock 102
Index

retrigger frequency 102, 126
retriggered scan mode
 externally 104
 software 102
returning boards to the factory 149
rising-edge gate 115
RMA 149
running the Quick Data Acq application 81

S

sample clock
 external A/D 99
 internal A/D 99
sample rate 101
scan mode
 externally-retriggered 104
 software-retriggered 102
screw terminal panels
 AC1324 21
 STP-EZ 21
SDK 20
service and support procedure 148
signal conditioning backplanes
 5B01 21
 5B08 21
 7BP04-1 21
 7BP08-1 21
 7BP16-1 21
simultaneous sample-and-hold support 127
single buffer wrap mode 126
single-ended channels 127
 number of 127
single-ended inputs 46, 63
single-value operations 125
 analog input 100
 digital I/O 112
size, module 158
software packages 20
software supported 18
software trigger 100, 132
software-retriggered scan mode 102
specifications 151
 analog input 152
 analog output 155
 counter/timer 157
 digital I/O 156
 environmental 158, 159
 physical 158, 159
 power 158, 159
 regulatory 160
specifying a single channel
 analog input 94
 digital I/O 111
specifying one or more channels
 analog input 94
 digital I/O 95
stopping an operation 100
STP-EZ screw terminal panel 21, 32
attaching 35
subsystem descriptions
 A/D 93
 C/T 113
 D/A 108
 DIN and DOUT 111
supported thermocouple types 130
SupportedGains 127
SupportedResolutions 128
SupportedVoltageRanges 128
SupportsBinaryEncoding 126
SupportsBuffering 126
SupportsCascading 134
SupportsCjcSourceChannel 130
SupportsContinuous 125
SupportsCount 134
SupportsDifferential 127
SupportsExternalClock 133
SupportsGateHighEdge 134
SupportsGateHighLevel 134
SupportsGateLowEdge 134
SupportsGateLowLevel 134
SupportsGateNone 134
SupportsHighToLowPulse 134
SupportsInProcessFlush 126
SupportsInternalClock 133
SupportsLowToHighPulse 134
SupportsOneShot 134
SupportsOneShotRepeat 134
SupportsPosExternalTTLTrigger 132
SupportsProgrammableGain 127
SupportsRateGenerate 134
SupportsSimultaneousSampleHold 127
SupportsSingleEnded 127
SupportsSingleValue 125
SupportsSoftwareTrigger 132
SupportsThermocouple 130
SupportsTriggeredScan 126
SupportsVariablePulseWidth 134
SupportsWrapSingle 126
SW1 40
system requirements 28
Index

T

technical support 148
temperature sensor 142
thermocouple inputs 52
thermocouple support 130
ThermocoupleType 130
throughput
 maximum 133
 minimum 133
transferring data 107
triggered scan 126
 number of scans per trigger 126
 retrigger frequency 126
Triggered Scan Counter 102
triggered scan mode 102
triggers 100
 external 100
 external positive digital 132
 software 100, 132
troubleshooting
 procedure 146
 service and support procedure 148
 troubleshooting table 146
TTL trigger 100

U

units, counter/timer 113
unpacking 27
USB cable 21, 29

V

variable pulse width 134
Visual Basic for .NET programs 20
Visual C# programs 20
voltage ranges 96, 128
 number of 128

W

W3 jumper 62
wiring signals
 analog outputs 53, 69
 current loop analog inputs 51, 68
 differential analog inputs 49, 65
digital inputs and outputs 53, 70
event counting applications 54, 55, 74
eexternally cascading counter/timers 55, 57, 58, 75, 77, 78
frequency measurement applications 56, 76

pseudo-differential analog inputs 48, 65
pulse output applications 57, 77
single-ended analog inputs 47, 64
thermocouple analog inputs 52
writing programs in
 C/C++ 20
 Visual Basic .NET 20
 Visual C# 20