PCle-DAS1602/16
PCI Express Analog and Digital I/O Board

Features
- 16-bit resolution
- 16 single-ended (SE) or 8 differential (DIFF) analog input channels (switch-selectable)
- Up to 100 kS/s aggregate throughput (100 kS/s max for any channel)
- Two 12-bit analog outputs
- 32 digital I/O
- Three 16-bit counters
- 1 kS FIFO
- Connector- and software-compatible with the PCIM-DAS1602/16

Software
Supported Operating Systems
- Windows® 8/7/Vista®/XP, 32/64-bit
- Linux® open-source driver support

Ready-to-Run Applications
- InstaCal™ (install, configure, and test)
- TracerDAQ® (acquire, view, log, and generate)

Supported Programming Environments
- NI LabVIEW™ (Windows only)
- DASYLab®
- MATLAB® (Data Acquisition Toolbox™)

Overview
The PCle-DAS1602/16 is a multifunction measurement and control board designed for the PCI Express (PCle) bus. The board provides 16 SE or eight DIFF input channels with 16-bit resolution, two 12-bit analog outputs, 32 DIO, and three 16-bit counters.

The PCle-DAS1602/16 is a fully connector- and software-compatible replacement for the Measurement Computing PCIM-DAS1602/16.

The PCle-DAS1602/16 provides 16 single-ended or eight differential analog inputs, sample rates up to 100 kS/s, two 12-bit analog outputs, 32 digital I/O, and three 16-bit counters

Signal Connections
A 37-pin connector provides access to the 16 SE/8 DIFF analog inputs, two analog outputs, four digital and outputs, and three counter/timer channels.

A 40-pin connector provides access to 24 DIO connections.

Analog Output
Two 12-bit multiplying digital-to-analog converters (DACs) provide analog output on the PCle-DAS1602/16. DAC0 and DAC1 each accept a precision 5 V or 10 V reference, which provides onboard D/A unipolar ranges of 0 V to 5 V and 0 V to 10 V, and bipolar ranges of ±5 V and ±10 V.

Other ranges between 0 V and 10 V are available when an external precision voltage reference is supplied to the DAC0 REF IN pin or DAC1 REF IN pin of the main connector.

Onboard reference voltage, user-supplied reference voltage, and polarity are all jumper-selectable.

Digital I/O
The 24 digital I/O connections available on the 40-pin DIO connector of the PCle-DAS1602/16 are available as two eight-bit ports (ports A and B) and two four-bit ports (ports CH and CL). Each port can be configured independently as either input or output. These ports default to the input state (high impedance) on power up or reset.

Sample Rate
The PCle-DAS1602/16 offers a single-channel sample rate of 100 kS/s divided by the number of channels being sampled.
General Information

The eight digital I/O connections available on the main 37-pin connector consist of two 4-bit ports. One port is permanently configured as input, and the other port is permanently configured as output.

Pull-Up/Down Configuration

The PCIe-DAS1602/16 includes jumpers to set the digital bits for pull-up (+5 V) or pull down (0 V) when the board is powered on and reset. Ports A, B, CH, and CL are factory-configured for pull-up (+5 V).

Counter/Timer I/O

Each PCIe-DAS1602/16 offers three 16-bit down counters. Each counter accepts frequency inputs up to 10 MHz, and provides clock, gate, and output connections.

The frequency of the square wave used as a clock by the A/D pacer circuitry is jumper-selectable for 1 MHz (default), or 10 MHz. The internal pacer output driving the A/D converter is also available at pin 20 (CTR 3 Output) on the main 37-pin I/O connector.

Connect the counter clock to the onboard 10 MHz crystal oscillator, or leave unconnected for user input.

The A/D pacer clock trigger edge (rising or falling) that initiates the A/D conversions is jumper-selectable on the PCIe-DAS1602/16. The jumper is configured for rising edge by default.

Calibration

Field Calibration

Calibrating the PCIe-DAS1602/16 requires the following equipment:

- a precision (or non-precision) voltage source
- a 5½ digit digital voltmeter
- a few pieces of wire are required.
- a jeweler’s screwdriver to adjust the trim pots

An extender card is not required to calibrate the board.

For normal environments, calibrate the PCIe-DAS1602/16 every six months to a year using software.
PCIe-DAS1602/16

Software

Calibrate the A/D converters by applying a known voltage to an analog input channel and adjusting trim pots for offset and gain. Three trim pots require adjustment to calibrate the analog input section of the board. There are also three pots associated with each of the analog output channels.

Calibrate the PCIe-DAS1602/16 for the range you intend to use it in. When the range is changed, slight variations in zero and full scale may result. These variations can be measured and removed in software if necessary.

If frequent variations in temperature or humidity are common, recalibrate at least every three months.

Factory Calibration

PCIe-DAS1602/16 devices are factory-calibrated. Specifications are guaranteed for one year. For calibration beyond one year, return the device to the factory for recalibration.

Software Support

The PCIe-DAS1602/16 is supported by the software in the table below.

<table>
<thead>
<tr>
<th>Ready-to-Run Applications</th>
<th>General-Purpose Programming Support</th>
<th>Application-Specific Programming Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>InstaCal</td>
<td>Universal Library (UL)</td>
<td>ULx for NI LabVIEW</td>
</tr>
<tr>
<td>An interactive utility that configures and tests MCC hardware. Windows OS</td>
<td>Programming library of function calls for C, C++, VB, C# .Net, and VB .Net using Visual Studio and other IDEs. Windows OS</td>
<td>A comprehensive library of VIs and example programs for NI LabVIEW that is used to develop custom applications that interact with most MCC devices. Windows OS</td>
</tr>
<tr>
<td>InstaCal is included with the free MCC DAQ Software bundle (CD/download).</td>
<td>The UL is included with the free MCC DAQ Software bundle (CD/download).</td>
<td>ULx is included with the free MCC DAQ Software bundle (CD/download).</td>
</tr>
<tr>
<td>TracerDAQ and TracerDAQ Pro</td>
<td>Linux Driver</td>
<td>DASYLab Driver</td>
</tr>
<tr>
<td>A virtual strip chart, oscilloscope, function generator, and rate generator applications used to generate, acquire, analyze, display, and export data. Supported features may vary with hardware. The Pro version provides enhanced features. Windows OS</td>
<td>Open-source Linux drivers are available for most MCC devices. Example programs are also provided.</td>
<td>Icon-based data acquisition, graphics, control, and analysis software that allows users to create complex applications in minimal time without text-based programming.</td>
</tr>
<tr>
<td>TracerDAQ is included with the free MCC DAQ Software bundle (CD/download). TracerDAQ Pro is available as a purchased software download.</td>
<td></td>
<td>DASYLab is available as a purchased software download. Windows OS</td>
</tr>
<tr>
<td>MATLAB Driver</td>
<td></td>
<td>MATLAB Driver</td>
</tr>
<tr>
<td>High-level language and interactive environment for numerical computation, visualization, and programming. The Data Acquisition Toolbox, provided by The Mathworks, allows users to acquire data from most MCC PCI and USB devices.</td>
<td></td>
<td>High-level language and interactive environment for numerical computation, visualization, and programming. The Data Acquisition Toolbox, provided by The Mathworks, allows users to acquire data from most MCC PCI and USB devices.</td>
</tr>
</tbody>
</table>

Visit www.MathWorks.com for more information on MATLAB Data Acquisition Toolbox support.
PCIe-DAS1602/16
Specifications

Specifications
All specifications are subject to change without notice. Typical for 25 °C unless otherwise specified.

Analog Input
A/D converter type: LTC1605CSW
Resolution: 16 bits
Number of channels (switch-selectable): 16 SE/8 DIFF
Input ranges
Gain (software-selectable)
Unipolar/bipolar polarity (switch-selectable)
±10 V, ±5 V, ±2.5 V, ±1.25 V, 0 V to 10 V, 0 V to 5 V, 0 to 2.5 V, 0 V to 1.25 V
A/D pacing (software-selectable)
Internal counter: 82C54, positive or negative edge (jumper-selectable)
External source: Pin 25, positive or negative edge (software-selectable)
Software polled
A/D trigger (only available when internal pacing selected, software-selectable)
External edge trigger: Pin 25, positive or negative edge (software-selectable)
A/D gate (only available when internal pacing selected, software-selectable)
External gate: Pin 25, high or low level (software-selectable)
Simultaneous sample and hold trigger
TTL output: Pin 26 (jumper-selectable); Logic 0 = Hold, Logic 1 = Sample
Burst mode (software-selectable): Burst interval = 10 us
Data transfer: From 1024 sample FIFO through interrupt with REPINSW,
Interrupt, Software polled
Interrupt: INTA# mapped to IRQ through PCI BIOS at boot-time
Interrupt enable: Programmable through PCI9030
Interrupt polarity: Active high level or active low level, programmable through PLX9030
Interrupt sources (software-selectable): End of conversion; FIFO not empty;
End of Burst; End of Acquisition; FIFO half full
A/D Conversion Time: 10 µs max
Throughput
Single channel: 100 kS/s
Multichannel: (100 kS/s)/(# of channels)
Common mode range: ±10 V min
CMRR @ 60 Hz: –100 dB typ, –80 dB min
Input leakage current: ±3 nA max
Input impedance: 10 MΩ min
Absolute maximum input voltage: 55 V to –40 V fault-protected through input max

Analog Input Accuracy

<table>
<thead>
<tr>
<th>Range</th>
<th>Analog Input Source</th>
<th>Analog Input Number</th>
<th>Overall Analog Input Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10.00 V</td>
<td>±2.2 LSB/°C max</td>
<td>±1.8 LSB/°C max</td>
<td>±4.0 LSB/°C max</td>
</tr>
<tr>
<td>±5.000 V</td>
<td>±2.2 LSB/°C max</td>
<td>±1.9 LSB/°C max</td>
<td>±4.1 LSB/°C max</td>
</tr>
<tr>
<td>±2.500 V</td>
<td>±2.2 LSB/°C max</td>
<td>±2.0 LSB/°C max</td>
<td>±4.2 LSB/°C max</td>
</tr>
<tr>
<td>±1.250 V</td>
<td>±2.2 LSB/°C max</td>
<td>±2.3 LSB/°C max</td>
<td>±4.5 LSB/°C max</td>
</tr>
<tr>
<td>0 V to 10.00 V</td>
<td>±4.1 LSB/°C max</td>
<td>±1.9 LSB/°C max</td>
<td>±6.0 LSB/°C max</td>
</tr>
<tr>
<td>0 V to 5.000 V</td>
<td>±4.1 LSB/°C max</td>
<td>±2.1 LSB/°C max</td>
<td>±6.2 LSB/°C max</td>
</tr>
<tr>
<td>0 V to 2.500 V</td>
<td>±4.1 LSB/°C max</td>
<td>±2.4 LSB/°C max</td>
<td>±6.5 LSB/°C max</td>
</tr>
<tr>
<td>0 V to 1.250 V</td>
<td>±4.1 LSB/°C max</td>
<td>±3.0 LSB/°C max</td>
<td>±7.1 LSB/°C max</td>
</tr>
</tbody>
</table>

Absolute error change per °C temperature change is a combination of the gain and offset drift of many components. The theoretical worst case error of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors is at their maximum level, and causes error in the same direction.

The following table summarizes the worst case noise performance for the PCIe-DAS1602/16. Noise distribution is determined by gathering 50,000 samples with inputs tied to ground at the PCIe-DAS1602/16 main connector. Data is for both SE and DIFF modes of operation.

Input noise is assumed to be Gaussian. An RMS noise value from a Gaussian distribution is calculated by dividing the peak-to-peak bin spread by 6.6.
Noise performance may be affected by input cabling and/or excessive noise from adjacent PCBs within the PC enclosure.
Crosstalk is defined here as the influence of one channel upon another when scanning two channels at the specified per channel rate for a total of 50,000 samples. A full-scale (FS) 100 Hz triangle wave is input on channel 1, with channel 0 tied to analog ground at the 37 pin user connector. The table below summarizes the influence of channel 1 on channel 0 and does not include the effects of noise.

Analog Input Accuracy

<table>
<thead>
<tr>
<th>Range</th>
<th>±2 counts</th>
<th>±1 count</th>
<th>Max Counts</th>
<th>LSBrms</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10.00 V</td>
<td>97%</td>
<td>80%</td>
<td>11</td>
<td>1.7</td>
</tr>
<tr>
<td>±5.000 V</td>
<td>97%</td>
<td>80%</td>
<td>11</td>
<td>1.7</td>
</tr>
<tr>
<td>±2.500 V</td>
<td>96%</td>
<td>79%</td>
<td>11</td>
<td>1.7</td>
</tr>
<tr>
<td>±1.250 V</td>
<td>96%</td>
<td>79%</td>
<td>11</td>
<td>1.7</td>
</tr>
<tr>
<td>0 V to 10.00 V</td>
<td>88%</td>
<td>65%</td>
<td>15</td>
<td>2.3</td>
</tr>
<tr>
<td>0 V to 5.000 V</td>
<td>88%</td>
<td>65%</td>
<td>15</td>
<td>2.3</td>
</tr>
<tr>
<td>0 V to 2.500 V</td>
<td>83%</td>
<td>61%</td>
<td>15</td>
<td>2.3</td>
</tr>
<tr>
<td>0 V to 1.250 V</td>
<td>83%</td>
<td>61%</td>
<td>16</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Input noise is assumed to be Gaussian. An RMS noise value from a Gaussian distribution is calculated by dividing the peak-to-peak bin spread by 6.6.
Noise performance may be affected by input cabling and/or excessive noise from adjacent PCBs within the PC enclosure.
Crosstalk is defined here as the influence of one channel upon another when scanning two channels at the specified per channel rate for a total of 50,000 samples. A full-scale (FS) 100 Hz triangle wave is input on channel 1, with channel 0 tied to analog ground at the 37 pin user connector. The table below summarizes the influence of channel 1 on channel 0 and does not include the effects of noise.

Analog Input Accuracy Components

Gain error	Trimmable by potentiometer to 0
Offset error	Trimmable by potentiometer to 0
PGA linearity error	±1.3 LSB typ, ±10.0 LSB max
Integral linearity error	±0.5 LSB typ, ±3.0 LSB max
Differential linearity error	±0.5 LSB typ, ±2.0 LSB max

Each PCIe-DAS1602/16 is tested at the factory to assure the overall error of the board does not exceed ±5 LSB.
Total board error is a combination of gain, offset, differential linearity, and integral linearity error. The theoretical absolute accuracy of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors is at their maximum level, and causes error in the same direction.
PCIe-DAS1602/16

Specifications

<table>
<thead>
<tr>
<th>Crosstalk</th>
<th>1 kHz Cross-talk (LSB pk-pk)</th>
<th>10 kHz Cross-talk (LSB pk-pk)</th>
<th>50 kHz Cross-talk (LSB pk-pk)</th>
</tr>
</thead>
<tbody>
<tr>
<td>±10.000 V</td>
<td>4</td>
<td>13</td>
<td>24</td>
</tr>
<tr>
<td>±5.000 V</td>
<td>3</td>
<td>7</td>
<td>18</td>
</tr>
<tr>
<td>±2.5000 V</td>
<td>2</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>±1.250 V</td>
<td>3</td>
<td>4</td>
<td>14</td>
</tr>
<tr>
<td>0 V to 10.000 V</td>
<td>4</td>
<td>8</td>
<td>23</td>
</tr>
<tr>
<td>0 V to 5.000 V</td>
<td>3</td>
<td>5</td>
<td>16</td>
</tr>
<tr>
<td>0 V to 2.500 V</td>
<td>2</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>0 V to 1.250 V</td>
<td>3</td>
<td>3</td>
<td>16</td>
</tr>
</tbody>
</table>

Analog Output

D/A converter type: MX7548
Resolution: 12 bits
Number of channels: 2
Channel type: SE voltage output
Output range (jumper-selectable per output): ±10 V, ±5 V, 0 to 10 V, or 0 V to 5 V using onboard references, or user-defined using external reference

| Reference voltage (jumper-selectable) | Onboard: –10 V and –5 V
| External: Independent (DAC0 REF IN pin 10 and DAC1 REF IN/SSH OUT pin 26)
| External reference voltage range: ±10 V max
| External reference input impedance: 10 kΩ min
| Data transfer (system-dependent): Programmed I/O
| Monotonicity: Guaranteed monotonic over temperature
| Slew rate: 2.0 V/μs max
| Settling time: 30 μs max to ±½ LSB for a 20 V step
| Current drive: ±5 mA min
| Output short-circuit duration: Indefinite at 25 mA
| Output coupling: DC
| Output impedance: 0.1 Ω max
| Output stability: Any passive load

Coding: Offset binary

Bipolar mode
0 code = Vref
4095 code = –Vref – 1 LSB, Vref < 0 V
–Vref + 1 LSB, Vref > 0 V

Unipolar mode
0 code = 0 V
4095 code = –Vref – 1 LSB, Vref < 0 V
–Vref + 1 LSB, Vref > 0 V

Output voltage on power up and reset: 0 V ± 10 mV

<table>
<thead>
<tr>
<th>Analog Output Accuracy</th>
<th>±1 LSB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Absolute Accuracy</td>
<td>±2 LSB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analog Output Drift</th>
<th>±0.22 LSB/°C max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Output FS Gain Drift</td>
<td>±0.22 LSB/°C max</td>
</tr>
<tr>
<td>Overall Analog Output Drift</td>
<td>±0.44 LSB/°C max</td>
</tr>
</tbody>
</table>

Digital Input/Output

40-Pin Digital I/O Connector

Digital type: 82C55
Number of I/O: 24
Configuration per 82C55: 2 banks of 8 and 2 banks of 4, or 3 banks of 8, or 2 banks of 8 with handshake
Input high: 2.0 V min, 5.5 V absolute max
Input low: 0.8 V max, –0.5 V absolute min
Output high: 2.0 V min @ –2.5 mA
Output low: 0.4 V max @ 2.5 mA
Power-up/reset state: Input mode (high impedance)
Pull-up/pull-down resistors (jumper-selectable): All pins pulled up to +5 V by default through individual 47 kΩ resistors

37-Pin Main Connector

Counter
Counter type: 82C54
Configuration: 3 down counters, 16 bits each
Counter 1 source (software-selectable)
External source: Main connector pin 21
Internal source: 100 kHz
Counter 1 gate: External gate from main connector pin 24
Counter 1 output: Available from main connector pin 2
Counter 2 source (jumper-selectable): Internal 1 MHz; internal 10 MHz
Counter 2 gate (software-selectable): External source from main connector pin 25
Counter 2 output: Internal only, chained to counter 3 source
Counter 3 source: Counter 2 output
Counter 3 gate (software-selectable): External source from main connector pin 25
Counter 3 output: Available from main connector pin 20; programmable as A/D converter pacer clock.
Clock input frequency: 10 MHz max
High pulse width (clock input): 30 ns min
Low pulse width (clock input): 50 ns min
Gate width high: 50 ns min
Gate width low: 50 ns min
Input high: 2.0 V min, 5.5 V absolute max
Input low: 0.8 V max, –0.5 V absolute min
Output high: 3.0 V min @ –2.5 mA
Output low: 0.4 V max @ 2.5 mA
Crystal oscillator frequency: 10 MHz
Frequency accuracy: 50 ppm

Total board error is a combination of gain, offset, differential linearity and integral linearity error. The theoretical absolute accuracy of the board may be calculated by summing these component errors. Worst case error is realized only in the unlikely event that each of the component errors is at its maximum level, and causes error in the same direction.

* Pins 21, 24, and 25 are pulled to logic high through 47 kΩ resistors
Power Consumption
- 3.3 V quiescent: 500 mA typ, 750 mA max
- 12 V quiescent: 100 mA typ, 150 mA max
- User 5 V outputs: 10 mA

Environmental
- Operating temperature range: 0 °C to 70 °C
- Storage temperature range: −40 °C to 100°C
- Humidity: 0% to 95% non-condensing

Mechanical
- Board dimensions (L × W × H): 168 × 111 × 19 mm (6.6 × 4.4 × 0.7 in.)

Bus
- Bus type: PCI Express 1.0a
- Bus width: x1 lane PCI Express

Main Connector
- Connector type: 37-pin male D connector
- Connector compatibility: Identical to PCIM-DAS1602/16 connector

Digital I/O Connector
- Connector type: 40-pin header
- Connector compatibility: Identical to PCIM-DAS1602/16 connector

Ordering Information

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCIe-DAS1602/16</td>
<td>16-channel, 16-bit, 100 kS/s multifunction PCI Express board</td>
</tr>
</tbody>
</table>

Accessories and Cables

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP40-37</td>
<td>Backplate and cable assembly with 40-pin IDC female to 37-pin D male for CIO boards</td>
</tr>
<tr>
<td>C37FF-(x)</td>
<td>Cable, 40-conductor ribbon, female to female, (x = 2, 3, 4, 5, 10, 15, 20, 25,) or 50 feet</td>
</tr>
<tr>
<td>CIO-MINI37</td>
<td>Universal screw-terminal board, 37-pin</td>
</tr>
<tr>
<td>CIO-MINI37-VERT</td>
<td>Universal screw-terminal board, 37-pin D male connector, vertical</td>
</tr>
<tr>
<td>C37FFS-(x)</td>
<td>Cable, ribbon, 40-pin female IDC to 37-pin female D shell, (x = 5) or 10 feet</td>
</tr>
<tr>
<td>CIO-TERMINAL</td>
<td>Universal screw-terminal board, prototyping area 37 terminals</td>
</tr>
<tr>
<td>SCB-37</td>
<td>Signal connection box, 37-conductor, shielded</td>
</tr>
</tbody>
</table>

Signal Conditioning Options

Software also Available from MCC

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TracerDAQ Pro</td>
<td>Virtual strip chart, oscilloscope, function generator, and rate generator applications used to generate, acquire, analyze, display, and export data – professional version with enhanced features.</td>
</tr>
<tr>
<td>DASYLab</td>
<td>Icon-based data acquisition, graphics, control, and analysis software that allows users to create complex applications in minimal time without text-based programming.</td>
</tr>
</tbody>
</table>