USB-3100 Series
USB Voltage and Current Output

Overview
The USB-3100 Series are voltage and current output USB 2.0 full-speed devices. Each device provides four, eight, or 16 voltage outputs. The USB-3102/3104/3106 also provide four, eight, or 16 current outputs. All devices provide synchronous and concurrent voltage updates. All USB-3100 Series devices except the USB-3101FS provide eight digital I/O lines and one 32-bit event counter.

Analog Output
All USB-3100 Series devices provide either four, eight, or 16 channels of 16-bit analog output.

USB-3101FS: Each channel has a fixed ±10 V voltage output range. Outputs can be updated individually or simultaneously. Each channel has a D/A converter (DAC) that produces a voltage signal. Each channel also has ±30 V overvoltage and indefinite short-circuit protection. The USB-3101FS has 250 Vrms channel-to-ground isolation that protects the device and computer from ground spikes and ensures a reliable data stream, making it suitable for high-voltage applications.

All Other USB-3100 Series Devices: Each channel is software-selectable for either a bipolar voltage output range of ±10 V or a unipolar range of 0 V to 10 V. Channel outputs can be updated individually or simultaneously.

Current Output
(USB-3102/3104/3106 Only)
These devices provide 0 mA to 20 mA of current output. Each DAC controls a voltage/current channel pair simultaneously. Each channel pair can be updated individually or simultaneously.

Synchronous DAC Updates
All USB-3100 Series devices except the USB-3101FS have a synchronous DAC load connection pin that simultaneously updates DAC outputs on multiple devices. You can configure this with software as an input (slave mode) or as an output (master mode).

Features
- 4, 8, or 16 analog outputs
- 16-bit resolution
- Update rates from 100 S/s to 100 kS/s
- 4, 8, or 16 analog current outputs available
- High-drive output available
- Digital I/O, counter/timer available
- Synchronous update available

Supported Operating Systems
- Windows® 10/8/7/Vista® XP 32/64-bit
- Linux® (except for USB-3101FS)

Digital I/O
All USB-3100 Series devices except the USB-3101FS have eight bidirectional DIO lines. All digital pins are floating by default. A screw terminal connection is provided to configure for pull-up (+5 V) or pull-down (0 V).

Counter Input
Each USB-3100 Series device except for the USB-3101FS has a 32-bit event counter for counting TTL pulses. The counter increments when the TTL levels transition from low to high. The counter accepts frequency inputs of up to 1 MHz.

USB-3100 Series Selection Chart

<table>
<thead>
<tr>
<th>Model</th>
<th>Voltage Output</th>
<th>Update Rate</th>
<th>Current Output</th>
<th>DIO</th>
<th>Counter/Timer</th>
<th>Isolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB-3101</td>
<td>4</td>
<td>100 S/s</td>
<td>—</td>
<td>8</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>USB-3102</td>
<td>4</td>
<td>100 S/s</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>USB-3103</td>
<td>8</td>
<td>100 S/s</td>
<td>—</td>
<td>8</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>USB-3104</td>
<td>8</td>
<td>100 S/s</td>
<td>8</td>
<td>8</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>USB-3105</td>
<td>16</td>
<td>100 S/s</td>
<td>—</td>
<td>8</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>USB-3106</td>
<td>16</td>
<td>100 S/s</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>USB-3110</td>
<td>4 high-drive</td>
<td>100 S/s</td>
<td>—</td>
<td>8</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>USB-3112</td>
<td>8 high-drive</td>
<td>100 S/s</td>
<td>—</td>
<td>8</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>USB-3114</td>
<td>16 high-drive</td>
<td>100 S/s</td>
<td>—</td>
<td>8</td>
<td>1</td>
<td>—</td>
</tr>
<tr>
<td>USB-3101FS</td>
<td>4</td>
<td>100 kS/s</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>250 Vrms ch-to-gnd</td>
</tr>
</tbody>
</table>
USB-3100 Series
Software

Software Support
The USB-3100 Series is supported by the software in the table below.

<table>
<thead>
<tr>
<th>Ready-to-Run Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAQami™</td>
</tr>
<tr>
<td>Data acquisition companion software with drag-and-drop interface that is used to acquire, view, and log data, and generate signals. DAQami can be configured to log analog, digital, and counter channels, and to view that data in real-time or post-acquisition on user-configurable displays. Logged data can be exported for use in Excel® or MATLAB®. Windows OS</td>
</tr>
<tr>
<td>DAQami is included with the free MCC DAQ Software bundle. Install DAQami and try the fully-functional software for 30 days. After 30 days, all features except for data logging and data export will continue to be available – data logging and data export features can be unlocked by purchasing the software.</td>
</tr>
</tbody>
</table>

| **InstaCal™** |
| An interactive installation, configuration, and test utility for MCC hardware. Windows OS |
| InstaCal is included with the free MCC DAQ Software bundle. |

| **TracerDAQ™ and TracerDAQ Pro** |
| Virtual strip chart, oscilloscope, function generator, and rate generator applications used to generate, acquire, analyze, display, and export data. Supported features may vary by hardware. The Pro version provides enhanced features. Windows OS |
| TracerDAQ is included with the free MCC DAQ Software bundle. |
| TracerDAQ Pro is available as a purchased software download. |

<table>
<thead>
<tr>
<th>General-Purpose Programming Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal Library™ (UL) for Windows</td>
</tr>
<tr>
<td>Library for developing applications in C, C++, VB, C# .Net, VB .Net, and Python on Windows. The UL for Windows is included with the free MCC DAQ Software bundle. The UL Python API for Windows is available on GitHub (github.com/mccdaq/mcculw).</td>
</tr>
</tbody>
</table>

| **UL for Linux® (except for the USB-3101FS)** |
| Library for developing applications in C, C++, and Python on Linux. UL for Linux is available on GitHub (github.com/mccdaq/sldaq). |
| Open-source, third-party Linux drivers are also available for supported MCC devices. |

<table>
<thead>
<tr>
<th>Application-Specific Programming Support</th>
</tr>
</thead>
<tbody>
<tr>
<td>ULx for NI LabVIEW™</td>
</tr>
<tr>
<td>A comprehensive library of VIs and example programs for NI LabVIEW that is used to develop custom applications that interact with most MCC devices. Windows OS</td>
</tr>
<tr>
<td>ULx for NI LabVIEW is included with the free MCC DAQ Software bundle.</td>
</tr>
</tbody>
</table>

| **DASYLab®** |
| Icon-based data acquisition, graphics, control, and analysis software that allows users to create complex applications in minimal time without text-based programming. Windows OS |
| DASYLab is available as a purchased software download. An evaluation version is available for 28 days. |

| **MATLAB® driver (except for the USB-3101FS)** |

USB-3100 Series

Block Diagrams

USB-3106 Block Diagram

With 16 channels of analog voltage/current output, the USB-3106 contains a superset of the analog output features of these USB-3100 Series devices:

- USB-3101: 4 voltage output channels
- USB-3102: 4 voltage/current output channels
- USB-3103: 8 voltage output channels
- USB-3104: 8 voltage/current output channels
- USB-3105: 16 voltage output channels
USB-3100 Series Block Diagrams

USB-3114 Block Diagram

With 16 channels of high-drive analog voltage output, the USB-3114 contains a superset of the analog output features of these USB-3100 Series devices:

- USB-3110: 4 voltage output channels
- USB-3112: 8 voltage output channels

USB-3101FS Block Diagram
Specifications – all devices except USB-3101FS

Analog Voltage Output

D/A Converter: DAC8554

Number of Channels

USB-3101/3102/3110: 4
USB-3103/3104/3112: 8
USB-3105/3106/3114: 16

On the USB-3102/3104/3106, each DAC8554 output controls a voltage and current output channel-pair simultaneously. Writing to voltage channel 0 also updates current channel 0; conversely, writing to current channel 0 also updates voltage channel 0. Disconnect unused voltage and current output channels.

Resolution: 16 bits

Output Ranges (Software-Selectable)

Calibrated: ±10 V, 0 V to 10 V
Uncalibrated: ±10.2 V, -0.04 V to 10.08 V

Output Transient

±10 V to (0 V to 10 V) or (0 V to 10 V) to ±10 V Range Selection: The output defaults to 0 V when the output voltage range is reconfigured, the host computer is reset, shut-down, or suspended, or a reset command is issued to the device.

Duration: 5 µs typ

Amplitude: 5 V p-p typ

Host Computer is Reset, Powered On, Suspended, or a Reset Command is Issued to Device: The duration depends on the enumeration process of the host computer. Typically, the output is stable after two seconds.

Duration: 2 s typ

Amplitude: 2 V p-p typ

Initial Power On

Duration: 50 ms typ

Amplitude: 5 V peak typ

Differential Nonlinearity: The max specification applies to the operating temperature range, and accounts for max errors due to the software calibration algorithm (Cal mode) and DAC8554 nonlinearities.

Calibrated: ±1.25 LSB typ, -2 LSB to +1 LSB max

Uncalibrated: ±0.25 LSB typ, ±1 LSB max

Output Current

VOUTx Pins

USB-3101 through USB-3106: ±3.5 mA typ
USB-3110: ±40 mA max
USB-3112/3114: ±40 mA max single channel, ±180 mA total load current

Output Short-Circuit Protection

VOUTx Connected to AGND
USB-3101 through USB-3106: Indefinite
USB-3110/3112/3114: ±100 ms max

Output Coupling: DC

Power On and Reset State

DACs Cleared to Zero-Scale: 0 V, ±50 mV typ

Output Range: 0 V to 10 V

Output Noise

0 V to 10 V Range: 14.95 µVrms typ
±10 V Range: 31.67 µVrms typ

Setting Time

To 1 LSB Accuracy: 25 µs typ

Slew Rate

USB-3101 Through USB-3106

0 V to 10 V Range: 1.20 V/µS typ
±10 V Range: 1.20 V/µS typ

USB-3110/3112/3114

0 V to 10 V Range: 2.0 V/µS typ
±10 V Range: 4.0 V/µS typ

Throughput

Single-channel: 100 Hz max, system-dependent
Multichannel: 100 Hz/8ch max, system-dependent

Analog Current Output (USB-3102/3104/3106)

Number of Channels

USB-3102: 4
USB-3104: 8
USB-3106: 16

Each DAC8554 output controls a voltage and current output channel-pair simultaneously. Writing to voltage channel 0 also updates current channel 0; conversely, writing to current channel 0 also updates voltage channel 0. Disconnect unused voltage and current output channels.

Resolution: 16 bits

Output Ranges

Calibrated: 0 mA to 20 mA typ
Uncalibrated: 0 mA to 25 mA typ

Compliance voltage range (calibrated output): 8 V min, 36V max.
Formulas to calculate the max load resistance for current output circuit operation:
Calibrated output: Load Resistance = (compliance voltage – 6 V)/(0.020 A
Uncalibrated output: Load Resistance = (compliance voltage – 6 V)/(0.025 A

Differential Nonlinearity

Calibrated: ±1.25 LSB typ, -2 LSB to +1 LSB typ
Uncalibrated: ±2.5 LSB typ, -1 LSB to 1 LSB max

The max specification applies to the entire operating temperature range, and accounts for max errors due to the software calibration algorithm (in calibrated mode only) and the DAC8554 nonlinearities.

Absolute accuracy: ±0.05% of full-scale range (compliance voltage = 13 V, load resistance = 100Ω)

IOUTx leakage current: 100 mA typ for each individual IOUTx channel (all zeros written to IOUTx channel)

Settling time: 25 µS typ (full scale step to 1 LSB accuracy; compliance voltage = 12 V, load resistance = 500Ω)

Throughput

Single-channel: 100 Hz max, system-dependent
Multichannel: 100 Hz/8ch max, system-dependent

Analog Output Calibration

Recommended Warm-Up Time: 15 minutes min
Onboard Precision Reference

DC Level: 5.000 V ±1 mV max.
Tempco: ±10 ppm/°C max.
Long-Term Stability: ±10 ppm/SQRT(1000 hrs)

Calibration Method

USB-3101 Through USB-3106: Software calibration
USB-3110/3112/3114: SW calibration (VOUTx Rload = 20 mA fixed resistive load)

Calibration Interval: 1 year

Digital I/O

Digital Logic Type: CMOS

Number of I/O: 8

Configuration: Independently-configured for input or output

Pull-Up/Pull-Down Configuration: Software-selectable; all pins floating (default)

For pull-down, connect the DIO CTL pin to a DGND pin. For pull-up, connect the DIO CTL pin to the +5 V pin.

Digital I/O Input Loading: TTL (default); 47 kΩ (pull-up/pull-down configurations)

Digital I/O Transfer Rate (System-Paced): System-dependent, 33 to 1000 port reads/writes or single bit reads/writes per second.

Input High Voltage: 2.0 V min, 3.5 V absolute max
Input Low Voltage: 0.8 V max, -0.5 V absolute min

Output High Voltage (IOUT = –2.5 mA): 3.8 V min
Output Low Voltage (IOUT = 2.5 mA): 0.7 V max

Power On and Reset State: Input

Synchronous DAC Load

Pin name: SYNCNL, Schmitt trigger input, over-current protected with a 200 Ω series resistor.

Power On and Reset State: Input

Pin Type: Bidirectional; output the internal D/A LOAD signal, or receive the D/A LOAD signal from an external source.

Termination: Internal 100 kΩ pull-down

Input Clock Rate: 100 Hz max
Specifications – USB-3101FS

Analog Voltage Output
Number of Channels: 4
D/A Converter Resolution: 16 bit
D/A Converter Type: String
Output Range: ±10 V
Power On Voltage: 0 V
Operating Voltage: ±10.7 V nominal, ±10.3 V min, ±11 V max
Current Drive: ±1 mA per channel max
Output Impedance: 0.1 Ω
Stability:
- Offset Drift: ±80 μV/°C
- Gain Drift: 6 ppm/°C
Protection
- Overvoltage: ±30 V
- Short-Circuit: Indefinitely
Update Time
- One Channel: 3 μs
- Two Channels: 5 μs
- Three Channels: 7.5 μs
- Four Channels: 9.5 μs
Update Rate: 100 kS/s per channel max
Noise: 260 μVrms
Slew Rate: 4 V/μs
Crosstalk: 26 dB
Settling Time:
- 100 pF Load to 1 LSB
- FS Step: 20 μs
- 3 V Step: 10 μs
- 0.1 V Step: 8 μs
Glitch Energy
- 256 Steps, Worst Case: 2 mV for 2 μs
- Capacitive Drive: 1,500 pF min

Environmental
Operating temperature:
- USB-3101/3102: –40 °C to 85 °C
- All other devices: –40 °C to 70 °C
Storage temperature:
- –40 °C to 85 °C
Relative humidity (RH): 0 to 90% RH, noncondensing

Power
Supply current (USB enumeration): <100 mA
Supply current (quiescent): Total quiescent current requirement includes up to 10 mA for the status LED. This does not include any potential loading of the digital I/O bus, +5 V user terminal, or the VOUTx outputs.
- USB-3101/3102: 140 mA typ
- USB-3103/3104/3110: 160 mA typ
- USB-3105/3106: 200 mA typ
- USB-3112: 225 mA max
- USB-3114: 355 mA max
+5 V user output voltage range: 4.5 V to 5.25 V (USB power is within specified limits)
+5 V user output current: 10 mA max (total current sourced from the +5V for general use; includes any additional contribution due to DIO loading)
- USB-3102/3104/3106
 - ITEST output voltage range: 13 V, ±1% typ
 - ITEST output current: 30 mA max
ITEST refers to the total maximum amount of current that can be sourced from the ITEST user terminal, which should only be used for biasing individual IOUTx outputs to facilitate functional testing. Place a load resistor of 100 Ω between the ITEST pin and the IOUTx pin for proper operation
External power (USB-3110/3112/3114 only)
- Output voltage: 5 V, ±5%
- Output wattage: 10 W
- Power jack configuration: Two conductor
- Power jack barrel diameter: 6.3 mm
- Power jack pin diameter: 2.0 mm
- Power jack polarity: Center positive

Mechanical
Dimensions (L x W x H):
- USB-3102/3104/3106: 127.0 x 88.9 x 35.6 mm (5.0 x 3.5 x 1.4 in.)
- USB-3101/3103/3105: 114.3 x 139.7 x 38.1 mm (4.5 x 5.5 x 1.5 in.)
Weight: 544 g (1.2 lb)
USB-3100 Series

Ordering

Ordering Information

Hardware

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>USB-3101FS</td>
<td>USB-based four-channel, 16-bit, 100 kS/s, simultaneously updating analog output device with USB cable</td>
</tr>
<tr>
<td>USB-3101</td>
<td>USB-based four-channel, 16-bit, analog voltage output device with one 32-bit counter, eight DIO lines, and USB cable</td>
</tr>
<tr>
<td>USB-3102</td>
<td>USB-based four-channel, 16-bit, analog voltage/current output device with one 32-bit counter, eight DIO lines, and USB cable</td>
</tr>
<tr>
<td>USB-3103</td>
<td>USB-based eight-channel, 16-bit analog voltage output device with one 32-bit counter, eight DIO lines, and USB cable</td>
</tr>
<tr>
<td>USB-3104</td>
<td>USB-based eight-channel, 16-bit analog voltage/current output device with one 32-bit counter, eight DIO lines, and USB cable</td>
</tr>
<tr>
<td>USB-3105</td>
<td>USB-based 16-channel, 16-bit voltage output device with one 32-bit counter, eight DIO lines, and USB cable</td>
</tr>
<tr>
<td>USB-3106</td>
<td>USB-based 16-channel, 16-bit voltage/current output device with one 32-bit counter, eight DIO lines, and USB cable</td>
</tr>
<tr>
<td>USB-3110</td>
<td>USB-based four-channel, 16-bit high-drive analog output device with one 32-bit counter, eight DIO lines, USB cable, and PS-5V2AEPS power supply</td>
</tr>
<tr>
<td>USB-3112</td>
<td>USB-based eight-channel, 16-bit high-drive analog output device with one 32-bit counter, eight DIO lines, USB cable, and PS-5V2AEPS power supply</td>
</tr>
<tr>
<td>USB-3114</td>
<td>USB-based 16-channel, 16-bit high-drive analog output device with one 32-bit counter, eight DIO lines, USB cable, and PS-5V2AEPS power supply</td>
</tr>
</tbody>
</table>

Accessories and Cables (for USB-3101FS only)

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACC-107</td>
<td>Backshell with 10-position connector block (quantity 1)</td>
</tr>
<tr>
<td>ACC-121</td>
<td>10-position detachable screw terminal connector blocks (quantity 10)</td>
</tr>
</tbody>
</table>

Software also Available from MCC

<table>
<thead>
<tr>
<th>Part No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAQami</td>
<td>Data acquisition companion software for acquiring data and generating signals</td>
</tr>
<tr>
<td>TracerDAQ Pro</td>
<td>Out-of-the-box virtual instrument suite with strip chart, oscilloscope, function generator, and rate generator – professional version</td>
</tr>
<tr>
<td>DASYLab</td>
<td>Icon-based data acquisition, graphics, control, and analysis software</td>
</tr>
</tbody>
</table>